A new bright green-emitting fluorescent protein – engineered monomeric and dimeric forms


  • Note
    The nucleotide sequence data are available in the DDBJ/EMBL/GenBank databases under the accession number FN597286 and the protein sequence data are in UniProtKB/TrEMBL with the accession number D1J6P8.

L. Regan Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
Fax: (203) 432 5175
Tel: (203) 432 9843
E-mail: lynne.regan@yale.edu


Fluorescent proteins have become essential tools in molecular and biological applications. Here, we present a novel fluorescent protein isolated from warm water coral, Cyphastrea microphthalma. The protein, which we named vivid Verde fluorescent protein (VFP), matures readily at 37 °C and emits bright green light. Further characterizations revealed that VFP has a tendency to form dimers. By creating a homology model of VFP, based on the structure of the red fluorescent protein, DsRed, we were able to make mutations that alter the protein’s oligomerization state. We present two proteins, mVFP and mVFP1, that are both exclusively monomeric, and one protein, dVFP, which is dimeric. We characterized the spectroscopic properties of VFP and its variants in comparison with enhanced green fluorescent protein (EGFP), a widely used variant of GFP. All the VFP variants are at least twice as bright as EGFP. Finally, we demonstrated the effectiveness of the VFP variants in both in vitro and in vivo detection applications.

Structured digital abstract