SEARCH

SEARCH BY CITATION

References

  • 1
    Schmidt H & Walter U (1994) NO at work. Cell 78, 919925.
  • 2
    Masters BSS (2000) In In Nitric Oxide, Biology and Pathobiology (Ignarro LJ Ed), pp 91104. Academic Press, New York.
  • 3
    Daff S (2010) NO Synthase: structures and mechanisms. Nitric Oxide 23, 111.
  • 4
    Alderton WK, Cooper CE & Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357, 593615.
  • 5
    Stuehr DJ (1999) Mammalian nitric oxide synthases. Biochim Biophys Acta 1411, 217230.
  • 6
    Crane BR, Arvai AS, Ghosh DK, Wu C, Getzoff ED, Stuehr DJ & Tainer JA (1998) Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Science 279, 21212126.
  • 7
    Garcin ED, Bruns CM, Lloyd SJ, Hosfield DJ, Tiso M, Gacchui R, Stuehr DJ, Tainer JA & Getzoff ED (2004) Structural basis for isozyme-specific regulation of electron transfer in nitric oxide synthase. J Biol Chem 279, 3791837927.
  • 8
    Xia C, Misra I, Iyanagi T & Kim J-JP (2009) Regulation of interdomain interactions by calmodulin in inducible nitric-oxide synthase. J Biol Chem 284, 3070830717.
  • 9
    Raman CS, Li HY, Martasek P, Kral V, Masters BSS & Poulos TL (1998) Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center. Cell 95, 939950.
  • 10
    Stuehr DJ, Santolini J, Wang Z, Wei C & Adak S (2004) Update on mechanism and catalytic regulation in the NO synthases. J Biol Chem 279, 3616736170.
  • 11
    Abu-Soud HM & Stuehr DJ (1993) Nitric-oxide synthases reveal a role for calmodulin in controlling electron transfer. Proc Natl Acad Sci USA 90, 1076910772.
  • 12
    Roman LJ, Martasek P & Masters BSS (2002) Intrinsic and extrinsic modulation of nitric oxide synthase activity. Chem Rev 102, 11791189.
  • 13
    Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR & Snyder SH (1991) Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 351, 714718.
  • 14
    Karplus PA, Daniels MJ & Herriott JR (1991) Atomic structure of ferredoxin-NADP+ reductase: prototype for a structurally novel flavoenzyme family. Science 251, 6066.
  • 15
    Watenpaugh DK, Sieker LC & Jensen LH (1973) The binding of riboflavin-5′-phosphate in a flavoprotein: flavodoxin at 2.0 Å resolution. Proc Natl Acad Sci USA 70, 38573860.
  • 16
    Adak S, Ghosh S, Abu-Soud HM & Stuehr DJ (1999) Role of reductase domain cluster 1 acidic residues in neuronal nitric-oxide synthase. J Biol Chem 274, 2231322320.
  • 17
    Daff S, Sagami I & Shimizu T (1999) The 42-amino acid insert in the FMN domain of neuronal nitric oxide synthase exerts control over Ca2+/calmodulin electron transfer. J Biol Chem 274, 3058930595.
  • 18
    Abu-Soud HM, Yoho LL & Stuehr DJ (1994) Calmodulin controls neuronal nitric-oxide synthase by a dual mechanism. Activation of intra- and inter- domain electron transfer. J Biol Chem 269, 3204732050.
  • 19
    Gacchui R, Presta A, Bentley DF, Abu-Soud HM, McArthur R, Brudvig G, Ghosh DK & Stuehr DJ (1996) Characterisation of the reductase domain of rat neuronal nitric oxide synthase generated in the methylotrophic yeast Pichia pastoris. J Biol Chem 271, 2059420602.
  • 20
    Salerno JC, Harris DE, Irizarry K, Patel B, Morales AJ, Smith SME, Martasek P, Roman LJ, Masters BSS, Jones CL et al. (1997) An autoinhibitory control element defines calcium-regulated isoforms of nitric oxide synthase. J Biol Chem 272, 2976929777.
  • 21
    Roman LJ, Martasek P, Miller RT, Harris DE, de la Garza MA, Shea TM, Kim J-JP & Masters BSS (2000) The C termini of constitutive nitric oxide synthases control electron flow through the flavin and heme domains and affect modulation by calmodulin. J Biol Chem 275, 2922529232.
  • 22
    Jachymova M, Martasek P, Panda S, Roman LJ, Panda M, Shea TM, Ishimura Y, Kim J-JP & Masters BSS (2005) Recruitment of governing elements for electron transfer in the nitric oxide synthase family. Proc Natl Acad Sci USA 102, 1583315838.
  • 23
    Haque MM, Panda K, Tejero J, Aulak KS, Fadlalla MA, Mustovich AT & Stuehr DJ (2007) A connecting hinge represses the activity of endothelial nitric oxide synthase. Proc Natl Acad Sci USA 104, 92549259.
  • 24
    Jones RJ, Smith SME, Gao YT, DeMay BS, Mann KJ, Salerno KM & Salerno JC (2004) The function of the small insertion in the hinge subdomain in the control of constitutive mammalian nitric-oxide synthases. J Biol Chem 279, 3687636883.
  • 25
    Craig DH, Chapman SK & Daff S (2002) Calmodulin activates electron transfer through neuronal nitric oxide synthase reductase domain by releasing an NAPDH-dependent conformational lock. J Biol Chem 277, 3398733994.
  • 26
    Wang M, Roberts DL, Paschke R, Shea TM, Masters BSS & Kim J-JP (1997) Three-dimensional structure of NADPH-cytochrome P450 reductase: prototype for FMN- and FAD-containing enzymes. Proc Natl Acad Sci USA 94, 84118416.
  • 27
    Roman LJ & Masters BSS (2006) Electron transfer by neuronal nitric oxide synthase is regulated by concerted interaction of calmodulin and two intrinsic regulatory elements. J Biol Chem 281, 2311123118.
  • 28
    Hamdane D, Xia C, Im S-C, Zhang H, Kim J-JP & Waskell L (2009) Structure and function of an NADPH-cytochrome P450 oxidoreductase in an open conformation capable of reducing cytochrome P450. J Biol Chem 284, 1137411384.
  • 29
    Dunford AJ, Marshall KR, Munro AW & Scrutton NS (2004) Thermodynamic and kinetic analysis of the isolated FAD domain of rat neuronal nitric oxide synthase altered in the region of the FAD shielding residue Phe1395. Eur J Biochem 271, 25482560.
  • 30
    Guan Z-W, Kamatani D, Kimura S & Iyanagi T (2003) Mechanistic studies on the intramolecular one-electron transfer between the two flavins in the human neuronal nitric-oxide synthase and inducible nitric-oxide synthase flavin domains. J Biol Chem 278, 3085930868.
  • 31
    Wolthers KR & Schimerlik MI (2001) Reaction of neuronal nitric-oxide synthase with 2,6-dichloroindophenol and cytochrome c3+: influence of the electron acceptor and binding of Ca2+-activated calmodulin on the kinetic mechanism. Biochemistry 40, 47224737.
  • 32
    Knight K & Scrutton NS (2002) Stopped-flow kinetic studies of electron transfer in the reductase domain of neuronal nitric oxide synthase: re-evaluation of the kinetic mechanism reveals new enzyme intermediates and variation with cytochrome P450 reductase. Biochem J 367, 1930.
  • 33
    Tiso M, Konas DW, Panda K, Garcin ED, Sharma M, Getzoff ED & Stuehr DJ (2005) C-terminal residue Arg1400 enables NADPH to regulate electron transfer in neuronal nitric oxide synthase. J Biol Chem 280, 3920839219.
  • 34
    Schrammel A, Gorren ACF, Stuehr DJ, Schmidt K & Mayer B (1998) Isoform-specific effects of salts on nitric oxide synthase activity. Biochim Biophys Acta 1387, 257263.
  • 35
    Nishimura JS, Narayanasami R, Miller RT, Roman LJ, Panda S & Masters BSS (1999) The stimulatory effects of Hofmeister ions on the activities of neuronal nitric-oxide synthase – apparent substrate inhibition by L-arginine is overcome in the presence of protein-destabilizing agents. J Biol Chem 274, 53995466.
  • 36
    Narayanasami R, Nishimura JS, McMillan K, Roman LJ, Shea TM, Robida AM, Horowitz PM & Masters BSS (1997) The influence of chaotropic reagents on neuronal nitric oxide synthase and its flavoprotein module. Urea and guanidine hydrochloride stimulate NADPH-cytochrome c reductase activity of both proteins. Nitric Oxide 1, 3949.
  • 37
    Panda K, Hague MM, Garcin-Hosfield ED, Durra D, Getzoff ED & Stuehr DJ (2006) Surface charge interactions of the FMN module govern catalysis by nitric-oxide synthase. J Biol Chem 281, 3681936827.
  • 38
    Noble MA, Munro AW, Rivers SL, Robledo L, Daff SN, Yellowlees LJ, Shimizu T, Sagami I, Guillemette JG & Chapman SK (1999) Potentiometric analysis of the flavin cofactors of neuronal nitric oxide synthase. Biochemistry 38, 1641316418.
  • 39
    Welland A, Garnaud PE, Kitamura M, Miles CS & Daff S (2008) Importance of the domain–domain interface to the catalytic action of NO synthase reductase domain. Biochemistry 47, 97719780.
  • 40
    Ilagan RP, Tejero J, Aulak KS, Sougata SR, Hemann C, Wang Z-Q, Gangoda M, Zweier JL & Stuehr DJ (2009) Regulation of FMN subdomain interactions and function in neuronal nitric oxide synthase. Biochemistry 48, 38643876.
  • 41
    Wolthers KR & Schimerlik MI (2002) Neuronal nitric oxide synthase: substrate and solvent kinetic isotope effects on the steady-state kinetic parameters for the reduction of 2,6-dichloroindophenol and cytochrome c3+. Biochemistry 41, 196204.
  • 42
    Garnaud PE, Koetsier M, Ost TWB & Daff S (2004) Redox properties of the isolated flavin mononucleotide- and flavin adenine dinucleotide-binding domains of neuronal nitric oxide synthase. Biochemistry 43, 1103511044.
  • 43
    Adak S, Sharma M, Meade AL & Stuehr DJ (2002) A conserved flavin-shielding residue regulates NO synthase electron transfer and nicotinamide coenzyme specificity. Proc Natl Acad Sci USA 99, 1351613521.
  • 44
    Konas DW, Zhu K, Sharma M, Aulak KS, Brudvig GW & Stuehr DJ (2004) The FAD-shielding residue Phe1395 regulates neuronal nitric-oxide synthase catalysis by controlling NADP+ affinity and a conformational equilibrium within the flavoprotein domain. J Biol Chem 279, 3541235425.
  • 45
    Tiso M, Tejero J, Panda K, Aulak KS & Stuehr DJ (2007) Versatile regulation of neuronal nitric oxide synthase by specific regions of its C-terminal tail. Biochemistry 46, 1441814428.
  • 46
    Stuehr DJ, Tejero J & Haque MM (2009) Structural and mechanistic aspects of flavoproteins: electron transfer through the nitric oxide synthase flavoprotein domain. FEBS J 276, 39593974.
  • 47
    Ellis J, Gutierrez A, Barsukov IL, Huang WC, Grossmann JG & Roberts GCK (2009) Domain motion in cytochrome P450 reductase conformational equilibria revealed by NMR and small-angle X-ray scattering. J Biol Chem 284, 3662836637.
  • 48
    Newton DC, Montgomery HJ & Guillemette JG (1998) The reductase domain of the human inducible nitric oxide synthase is fully active in the absence of bound calmodulin. Arch Biochem Biophys 359, 249257.
  • 49
    Pollock VV & Barber MJ (2001) Kinetic and mechanistic properties of biotin sulfoxide reductase. Biochemistry 40, 14301440.
  • 50
    Gibson QH (1969) Rapid mixing: stopped flow. Methods Enzymol 16, 187228.