SEARCH

SEARCH BY CITATION

References

  • 1
    Rawson JM, Dimitroff B, Johnson KG, Rawson JM, Ge X, Van Vactor D & Selleck SB (2005) The heparan sulfate proteoglycans Dally-like and Syndecan have distinct functions in axon guidance and visual-system assembly in Drosophila. Curr Biol 15, 833838.
  • 2
    Rhiner C, Gysi S, Frohli E, Hengartner MO & Hajnal A (2005) Syndecan regulates cell migration and axon guidance in C. elegans. Development 132, 46214633.
  • 3
    Kim CW, Goldberger OA, Gallo RL & Bernfield M (1994) Members of the syndecan family of heparan sulfate proteoglycans are expressed in distinct cell-, tissue-, and development-specific patterns. Mol Biol Cell 5, 797805.
  • 4
    Morgan MR, Humphries MJ & Bass MD (2007) Synergistic control of cell adhesion by integrins and syndecans. Nat Rev Mol Cell Biol 8, 957969.
  • 5
    Okina E, Manon-Jensen T, Whiteford JR & Couchman JR (2009) Syndecan proteoglycan contributions to cytoskeletal organization and contractility. Scand J Med Sci Sports 19, 479489.
  • 6
    Xian X, Gopal S & Couchman JR (2010) Syndecans as receptors and organizers of the extracellular matrix. Cell Tissue Res 339, 3146.
  • 7
    Granés F, Urena JM, Rocamora N & Vilaró S (2000) Ezrin links syndecan-2 to the cytoskeleton. J Cell Sci 113, 12671276.
  • 8
    Couchman JR (2003) Syndecans: proteoglycan regulators of cell-surface microdomains? Nat Rev Mol Cell Biol 4, 926937.
  • 9
    Oh ES, Couchman JR & Woods A (1997) Serine phosphorylation of syndecan-2 proteoglycan cytoplasmic domain. Arch Biochem Biophys 1, 6774.
  • 10
    Baciu PC, Saoncella S, Lee SH, Denhez F, Leuthardt D & Goetinck PF (2000) Syndesmos, a protein that interacts with the cytoplasmic domain of syndecan-4, mediates cell spreading and actin cytoskeletal organization. J Cell Sci 113, 315324.
  • 11
    Choi S, Lee E, Kwon S, Park H, Yi JY, Kim S, Han IO, Yun Y & Oh ES (2005) Transmembrane domain-induced oligomerization is crucial for the functions of syndecan-2 and syndecan-4. J Biol Chem 280, 4257342579.
  • 12
    Dews IC & Mackenzie KR (2007) Transmembrane domains of the syndecan family of growth factor coreceptors display a hierarchy of homotypic and heterotypic interactions. Proc Natl Acad Sci USA 104, 2078220787.
  • 13
    Bishop JR, Schuksz M & Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446, 10301037.
  • 14
    Nadanaka S & Kitagawa H (2008) Heparan sulphate biosynthesis and disease. J Biochem 144, 714.
  • 15
    Steinfeld R, Van Den Berghe H & David G (1996) Stimulation of fibroblast growth factor receptor-1 occupancy and signaling by cell surface-associated syndecans and glypican. J Cell Biol 133, 405416.
  • 16
    Brown MS, Ye J, Rawson RB & Goldstein JL (2000) Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100, 391398.
  • 17
    Schulz JG, Annaert W, Vandekerckhove J, Zimmermann P, De Strooper B & David G (2003) Syndecan 3 intramembrane proteolysis is presenilin/gamma-secretase-dependent and modulates cytosolic signaling. J Biol Chem 278, 4865148657.
  • 18
    Iozzo RV & Schaefer L (2010) Proteoglycans in health and disease: novel regulatory signaling mechanisms evoked by the small leucine-rich proteoglycans. FEBS J 277, 38643875.
  • 19
    Visse R & Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92, 827839.
  • 20
    Cho NH, Shim HS, Rha SY, Kang SH, Hong SH, Choi YD, Hong SJ & Cho SH (2003) Increased expression of matrix metalloproteinase 9 correlates with poor prognostic variables in renal cell carcinoma. Eur Urol 44, 560566.
  • 21
    Curran S, Dundas SR, Buxton J, Leeman MF, Ramsay R & Murray GI (2004) Matrix metalloproteinase/tissue inhibitors of matrix metalloproteinase phenotype identifies poor prognosis colorectal cancers. Clin Cancer Res 10, 82298234.
  • 22
    Deryugina EI & Quigley JP (2005) Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25, 934.
  • 23
    Leco KJ, Khokha R, Pavloff N, Hawkes SP & Edwards DR (1994) Tissue inhibitor of metalloproteinases-3 (TIMP-3) is an extracellular matrix-associated protein with a distinctive pattern of expression in mouse cells and tissues. J Biol Chem 269, 93529360.
  • 24
    Nagase H, Visse R & Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69, 562573.
  • 25
    Yu WH, Yu S, Meng Q, Brew K & Woessner JF (2000) TIMP-3 binds to sulfated glycosaminoglycans of the extracellular matrix. J Biol Chem 275, 3122631232.
  • 26
    Fitzgerald ML, Wang Z, Park PW, Murphy G & Bernfield M (2000) Shedding of syndecan-1 and -4 ectodomains is regulated by multiple signaling pathways and mediated by a TIMP-3-sensitive metalloproteinase. J Cell Biol 148, 811824.
  • 27
    Amour A, Slocombe PM, Webster A, Butler M, Knight CG, Smith BJ, Stephens PE, Shelley C, Hutton M, Knäuper V et al. (1998) TNF-alpha converting enzyme (TACE) is inhibited by TIMP-3. FEBS Lett 435, 3944.
  • 28
    Amour A, Knight CG, Webster A, Slocombe PM, Stephens PE, Knäuper V, Docherty AJ & Murphy G (2000) The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3. FEBS Lett 473, 275279.
  • 29
    Loechel F, Fox JW, Murphy G, Albrechtsen R & Wewer UM (2000) ADAM 12-S cleaves IGFBP-3 and IGFBP-5 and is inhibited by TIMP-3. Biochem Biophys Res Commun 278, 511515.
  • 30
    Kashiwagi M, Tortorella M, Nagase H & Brew K (2001) TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAMTS-4) and aggrecanase 2 (ADAMTS-5). J Biol Chem 276, 1250112504.
  • 31
    Rapti M, Atkinson SJ, Lee MH, Trim A, Moss M & Murphy G (2008) The isolated N-terminal domains of TIMP-1 and TIMP-3 are insufficient for ADAM10 inhibition. Biochem J 411, 433439.
  • 32
    Roderfeld M, Graf J, Giese B, Salguero-Palacios R, Tschuschner A, Müller-Newen G & Roeb E (2007) Latent MMP-9 is bound to TIMP-1 before secretion. Biol Chem 388, 12271234.
  • 33
    Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E & Seiki M (1994) A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370, 6165.
  • 34
    Strongin AY, Collier I, Bannikov G, Marmer BL, Grant GA & Goldberg GI (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease.. J Biol Chem 270, 53315338.
  • 35
    Itoh Y, Ito N, Nagase H & Seiki M (2008) The second dimer interface of MT1-MMP, the transmembrane domain, is essential for ProMMP-2 activation on the cell surface. J Biol Chem 283, 1305313062.
  • 36
    Jalkanen M, Rapraeger A, Saunders S & Bernfield MJ (1987) Cell surface proteoglycan of mouse mammary epithelial cells is shed by cleavage of its matrix-binding ectodomain from its membrane-associated domain. Cell Biol 105, 30873096.
  • 37
    Kainulainen V, Wang H, Schick C & Bernfield M (1998) Syndecans, heparan sulfate proteoglycans, maintain the proteolytic balance of acute wound fluids. J Biol Chem 273, 1156311569.
  • 38
    Spring J, Paine-Saunders SE, Hynes RO & Bernfield M (1994) Drosophila syndecan: conservation of a cell-surface heparan sulfate proteoglycan. Proc Natl Acad Sci USA 91, 33343338.
  • 39
    Yanagishita M & Hascall VC (1992) Cell surface heparan sulfate proteoglycans. J Biol Chem 267, 94519454.
  • 40
    Li Q, Park PW, Wilson CL & Parks WC (2002) Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 111, 635646.
  • 41
    Brule S, Charnaux N, Sutton A, Ledoux D, Chaigneau T, Saffar L & Gattegno L (2006) The shedding of syndecan-4 and syndecan-1 from HeLa cells and human primary macrophages is accelerated by SDF-1/CXCL12 and mediated by the matrix metalloproteinase-9. Glycobiology 16, 488501.
  • 42
    Fears CY, Gladson CL & Woods A (2006) Syndecan-2 is expressed in the microvasculature of gliomas and regulates angiogenic processes in microvascular endothelial cells. J Biol Chem 281, 1453314536.
  • 43
    Endo K, Takino T, Miyamori H, Kinsen H, Yoshizaki T, Furukawa M & Sato H (2003) Cleavage of syndecan-1 by membrane type matrix metalloproteinase-1 stimulates cell migration. J Biol Chem 278, 4076440770.
  • 44
    Schmidt A, Echtermeyer F, Alozie A, Brands K & Buddecke E (2005) Plasmin- and thrombin-accelerated shedding of syndecan-4 ectodomain generates cleavage sites at Lys(114)–Arg(115) and Lys(129)–Val(130) bonds. J Biol Chem 280, 3444134446.
  • 45
    Wang Z, Götte M, Bernfield M & Reizes O (2005) Constitutive and accelerated shedding of murine syndecan-1 is mediated by cleavage of its core protein at a specific juxtamembrane site. Biochemistry 44, 1235512361.
  • 46
    Edwards DR, Handsley MM & Pennington CJ (2008) The ADAM metalloproteinases. Mol Aspects Med 29, 258289.
  • 47
    Pruessmeyer J, Martin C, Hess FM, Schwarz N, Schmidt S, Kogel T, Hoettecke N, Schmidt B, Sechi A, Uhlig S et al. (2010) A disintegrin and metalloproteinase 17 (ADAM17) mediates inflammation-induced shedding of syndecan-1 and -4 by lung epithelial cells. J Biol Chem 285, 555564.
  • 48
    Iba K, Albrechtsen R, Gilpin B, Fröhlich C, Loechel F, Zolkiewska A, Ishiguro K, Kojima T, Liu W, Langford JK et al. (2000) The cysteine-rich domain of human ADAM 12 supports cell adhesion through syndecans and triggers signaling events that lead to beta1 integrin-dependent cell spreading. J Cell Biol 149, 11431156.
  • 49
    Sørensen HP, Vivès RR, Manetopoulos C, Albrechtsen R, Lydolph MC, Jacobsen J, Couchman JR & Wewer UM (2008) Heparan sulfate regulates ADAM12 through a molecular switch mechanism. J Biol Chem 283, 3192031932.
  • 50
    Porter S, Clark IM, Kevorkian L & Edwards DR (2005) The ADAMTS metalloproteinases. Biochem J 386, 1527.
  • 51
    Gao G, Plaas A, Thompson VP, Jin S, Zuo F & Sandy JD (2004) ADAMTS4 (aggrecanase-1) activation on the cell surface involves C-terminal cleavage by glycosylphosphatidyl inositol-anchored membrane type 4-matrix metalloproteinase and binding of the activated proteinase to chondroitin sulfate and heparan sulfate on syndecan-1. J Biol Chem 279, 1004210051.
  • 52
    Tortorella MD, Burn TC, Pratta MA, Abbaszade I, Hollis JM, Liu R, Rosenfeld SA, Copeland RA, Decicco CP, Wynn R et al. (1999) Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. Science 284, 16641666.
  • 53
    Echtermeyer F, Bertrand J, Dreier R, Meinecke I, Neugebauer K, Fuerst M, Lee YJ, Song YW, Herzog C, Theilmeier G et al. (2009) Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nat Med 15, 10721076.
  • 54
    Rodríguez-Manzaneque JC, Carpizo D, Plaza-Calonge Mdel C, Torres-Collado AX, Thai SN, Simons M, Horowitz A & Iruela-Arispe ML (2008) Cleavage of syndecan-4 by ADAMTS1 provokes defects in adhesion. Int J Biochem Cell Biol 41, 800810.
  • 55
    Subramanian SV, Fitzgerald ML & Bernfield M (1997) Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor receptor activation. J Biol Chem 272, 1471314720.
  • 56
    Charnaux N, Brule S, Chaigneau T, Saffar L, Sutton A, Hamon M, Prost C, Lievre N, Vita C & Gattegno L (2005) RANTES (CCL5) induces a CCR5-dependent accelerated shedding of syndecan-1 (CD138) and syndecan-4 from HeLa cells and forms complexes with the shed ectodomains of these proteoglycans as well as with those of CD44. Glycobiology 15, 119130.
  • 57
    Chen Y, Hayashida A, Bennett AE, Hollingshead SK & Park PW (2007) Streptococcus pneumoniae sheds syndecan-1 ectodomains through ZmpC, a metalloproteinase virulence factor. J Biol Chem 282, 159167.
  • 58
    Park PW, Foster TJ, Nishi E, Duncan SJ, Klagsbrun M & Chen Y (2004) Activation of syndecan-1 ectodomain shedding by Staphylococcus aureus alpha-toxin and beta-toxin. J Biol Chem 279, 251258.
  • 59
    Wang JB, Guan J, Shen J, Zhou L, Zhang YJ, Si YF, Yang L, Jian XH & Sheng Y (2009) Insulin increases shedding of syndecan-1 in the serum of patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 86, 8388.
  • 60
    Yang Y, Macleod V, Miao HQ, Theus A, Zhan F, Shaughnessy JD Jr, Sawyer J, Li JP, Zcharia E, Vlodavsky I et al. (2007) Heparanase enhances syndecan-1 shedding: a novel mechanism for stimulation of tumor growth and metastasis. J Biol Chem 282, 1332613333.
  • 61
    Andrian E, Grenier D & Rouabhia M (2005) Porphyromonas gingivalis lipopolysaccharide induces shedding of syndecan-1 expressed by gingival epithelial cells. J Cell Physiol 204, 178183.
  • 62
    Park PW, Pier GB, Hinkes MT & Bernfield M (2001) Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence. Nature 411, 98102.
  • 63
    Popova TG, Millis B, Bradburne C, Nazarenko S, Bailey C, Chandhoke V & Popov SG (2006) Acceleration of epithelial cell syndecan-1 shedding by anthrax hemolytic virulence factors. BMC Microbiol 6, 8.
  • 64
    Chung MC, Popova TG, Millis BA, Mukherjee DV, Zhou W, Liotta LA, Petricoin EF, Chandhoke V, Bailey C & Popov SG (2006) Secreted neutral metalloproteases of Bacillus anthracis as candidate pathogenic factors. J Biol Chem 281, 3140831418.
  • 65
    Kalia M, Chandra V, Rahman SA, Sehgal D & Jameel S (2009) Heparan sulfate proteoglycans are required for cellular binding of the hepatitis E virus ORF2 capsid protein and for viral infection. J Virol 83, 1271412724.
  • 66
    Horowitz A & Simons M (1998) Regulation of syndecan-4 phosphorylation in vivo. J Biol Chem 273, 1091410918.
  • 67
    Ott VL & Rapraeger AC (1998) Tyrosine phosphorylation of syndecan-1 and -4 cytoplasmic domains in adherent B82 fibroblasts. J Biol Chem 273, 3529135298.
  • 68
    Reiland J, Ott VL, Lebakken CS, Yeaman C, McCarthy J & Rapraeger AC (1996) Pervanadate activation of intracellular kinases leads to tyrosine phosphorylation and shedding of syndecan-1. Biochem J 319, 3947.
  • 69
    Hayashida K, Stahl PD & Park PW (2008) Syndecan-1 ectodomain shedding is regulated by the small GTPase Rab5. J Biol Chem 283, 3543535444.
  • 70
    Martin P & Leibovich SJ (2005) Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol 15, 599607.
  • 71
    Cizmeci-Smith G, Langan E, Youkey J, Showalter LJ & Carey DJ (1997) Syndecan-4 is a primary-response gene induced by basic fibroblast growth factor and arterial injury in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 17, 172180.
  • 72
    Gallo R, Kim C, Kokenyesi R, Adzick NS & Bernfield M (1996) Syndecans-1 and -4 are induced during wound repair of neonatal but not fetal skin. J Invest Dermatol 107, 676683.
  • 73
    Lusis AJ (2000) Atherosclerosis. Nature 407, 233241.
  • 74
    Houston M, Julien MA, Parthasarathy S & Chaikof EL (2005) Oxidized linoleic acid regulates expression and shedding of syndecan-4. Am J Physiol Cell Physiol 288, 458466.
  • 75
    Seidel C, Ringdén O & Remberger M (2003) Increased levels of syndecan-1 in serum during acute graft-versus-host disease. Transplantation 76, 423426.
  • 76
    Zlotnik A & Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12, 121127.
  • 77
    Elenius K, Vainio S, Laato M, Salmivirta M, Thesleff I & Jalkanen MJ (1991) Induced expression of syndecan in healing wounds. Cell Biol 114, 585595.
  • 78
    Chen P, Abacherli LE, Nadler ST, Wang Y, Li Q & Parks WC (2009) MMP7 shedding of syndecan-1 facilitates re-epithelialization by affecting alpha(2)beta(1) integrin activation. PLoS ONE 10, e6565.
  • 79
    Leppä S, Vleminckx K, Van Roy F & Jalkanen M (1996) Syndecan-1 expression in mammary epithelial tumor cells is E-cadherin-dependent. J Cell Sci 109, 13931403.
  • 80
    Kato M, Saunders S, Nguyen H & Bernfield M (1995) Loss of cell surface syndecan-1 causes epithelia to transform into anchorage-independent mesenchyme-like cells. Mol Biol Cell 6, 559576.
  • 81
    Grushkin-Lerner LS & Trinkaus-Randall V (1991) Localization of integrin and syndecan in vivo in a corneal epithelial abrasion and keratectomy. Curr Eye Res 10, 7585.
  • 82
    Oksala O, Salo T, Tammi R, Häkkinen L, Jalkanen M, Inki P & Larjava H (1995) Expression of proteoglycans and hyaluronan during wound healing. J Histochem Cytochem 43, 125135.
  • 83
    Kliment CR, Englert JM, Gochuico BR, Yu G, Kaminski N, Rosas I & Oury TD (2009) Oxidative stress alters syndecan-1 distribution in lungs with pulmonary fibrosis. J Biol Chem 284, 35373545.
  • 84
    Elenius V, Götte M, Reizes O, Elenius K & Bernfield M (2004) Inhibition by the soluble syndecan-1 ectodomains delays wound repair in mice overexpressing syndecan-1. J Biol Chem 279, 4192841935.
  • 85
    Jurjus RA, Liu Y, Pal-Ghosh S, Tadvalkar G & Stepp MA (2008) Primary dermal fibroblasts derived from sdc-1 deficient mice migrate faster and have altered alphav integrin function. Wound Repair Regen 16, 649660.
  • 86
    McGuire JK, Li Q & Parks WC (2003) Matrilysin (matrix metalloproteinase-7) mediates E-cadherin ectodomain shedding in injured lung epithelium. Am J Pathol 162, 18311843.
  • 87
    Beauvais DM, Ell BJ, McWhorter AR & Rapraeger AC (2009) Syndecan-1 regulates alphavbeta3 and alphavbeta5 integrin activation during angiogenesis and is blocked by synstatin, a novel peptide inhibitor. J Exp Med 206, 691705.
  • 88
    Whiteford JR, Behrends V, Kirby H, Kusche-Gullberg M, Muramatsu T & Couchman JR (2007) Syndecans promote integrin-mediated adhesion of mesenchymal cells in two distinct pathways. Exp Cell Res 313, 39023913.
  • 89
    Whiteford JR & Couchman JR (2006) A conserved NXIP motif is required for cell adhesion properties of the syndecan-4 ectodomain. J Biol Chem 281, 3215632163.
  • 90
    Beauvais DM, Burbach BJ & Rapraeger AC (2004) The syndecan-1 ectodomain regulates alphavbeta3 integrin activity in human mammary carcinoma cells. J Cell Biol 167, 171181.
  • 91
    McQuade KJ, Beauvais DM, Burbach BJ & Rapraeger AC (2006) Syndecan-1 regulates alphavbeta5 integrin activity in B82L fibroblasts. J Cell Sci 119, 24452456.
  • 92
    Langford JK, Yang Y, Kieber-Emmons T & Sanderson RD (2005) Identification of an invasion regulatory domain within the core protein of syndecan-1. J Biol Chem 280, 34673473.
  • 93
    Vuoriluoto K, Jokinen J, Kallio K, Salmivirta M, Heino J & Ivaska J (2008) Syndecan-1 supports integrin alpha2beta1-mediated adhesion to collagen. Exp Cell Res 314, 33693381.
  • 94
    Theocharis AD, Skandalis SS, Tzanakakis GN & Karamanos NK (2010) Proteoglycans in health and disease: novel roles for proteoglycan in malignancy and their pharmacological targeting. FEBS J 277, 39043923.
  • 95
    Yu WH & Woessner JF (2000) Heparan sulfate proteoglycans as extracellular docking molecules for matrilysin (matrix metalloproteinase 7). J Biol Chem 275, 41834191.
  • 96
    Munteanu SE, Ilic MZ & Handley CJ (2002) Highly sulfated glycosaminoglycans inhibit aggrecanase degradation of aggrecan by bovine articular cartilage explant cultures. Matrix Biol 21, 429440.
  • 97
    Yu WH & Woessner JF (2001) Heparin-enhanced zymographic detection of matrilysin and collagenases. Anal Biochem 293, 3842.
  • 98
    Munesue S, Yoshitomi Y, Kusano Y, Koyama Y, Nishiyama A, Nakanishi H, Miyazaki K, Ishimaru T, Miyaura S, Okayama M et al. (2007) A novel function of syndecan-2, suppression of matrix metalloproteinase-2 activation, which causes suppression of metastasis. J Biol Chem 282, 2816428174.
  • 99
    Troeberg L, Fushimi K, Scilabra SD, Nakamura H, Dive V, Thøgersen IB, Enghild JJ & Nagase H (2009) The C-terminal domains of ADAMTS-4 and ADAMTS-5 promote association with N-TIMP-3. Matrix Biol 28, 463469.
  • 100
    Safaiyan F, Kolset SO, Prydz K, Gottfridsson E, Lindahl U & Salmivirta M (1999) Selective effects of sodium chlorate treatment on the sulfation of heparan sulfate. J Biol Chem 274, 3626736273.
  • 101
    Zhang L, Yang M, Yang D, Cavey G, Davidson P & Gibson G (2010) Molecular interactions of MMP-13 C-terminal domain with chondrocyte proteins. Connect Tissue Res 51, 230239.
  • 102
    Beauvais DM & Rapraeger AC (2004) Syndecans in tumor cell adhesion and signaling. Reprod Biol Endocrinol 2, 3.
  • 103
    Joensuu H, Anttonen A, Eriksson M, Mäkitaro R, Alfthan H, Kinnula V & Leppä S (2002) Soluble syndecan-1 and serum basic fibroblast growth factor are new prognostic factors in lung cancer. Cancer Res 62, 52105217.
  • 104
    Vassilakopoulos TP, Kyrtsonis MC, Papadogiannis A, Nadali G, Angelopoulou MK, Tzenou T, Dimopoulou MN, Siakantaris MP, Kontopidou FN, Kalpadakis C et al. (2005) Serum levels of soluble syndecan-1 in Hodgkin’s lymphoma. Anticancer Res 25, 47434746.
  • 105
    Bayer-Garner IB, Sanderson RD, Dhodapkar MV, Owens RB & Wilson CS (2001) Syndecan-1 (CD138) immunoreactivity in bone marrow biopsies of multiple myeloma: shed syndecan-1 accumulates in fibrotic regions. Modern Pathol 14, 10521058.
  • 106
    Lovell R, Dunn JA, Begum G, Barth NJ, Plant T, Moss PA, Drayson MT & Pratt G (2005) Soluble syndecan-1 level at diagnosis is an independent prognostic factor in multiple myeloma and the extent of fall from diagnosis to plateau predicts for overall survival. Br J Haematol 130, 542548.
  • 107
    Seidel C, Sundan A, Hjorth M, Turesson I, Dahl IM, Abildgaard N, Waage A & Borset M (2000) Serum syndecan-1: a new independent prognostic marker in multiple myeloma. Blood 95, 388392.
  • 108
    Nikolova V, Koo CY, Ibrahim SA, Wang Z, Spillmann D, Dreier R, Kelsch R, Fischgräbe J, Smollich M, Rossi LH et al. (2009) Differential roles for membrane-bound and soluble syndecan-1 (CD138) in breast cancer progression. Carcinogenesis 30, 397407.
  • 109
    Yang Y, Yaccoby S, Liu W, Langford JK, Pumphrey CY, Theus A, Epstein J & Sanderson RD (2002) Soluble syndecan-1 promotes growth of myeloma tumors in vivo. Blood 100, 610617.
  • 110
    Dhodapkar MV, Kelly T, Theus A, Athota AB, Barlogie B & Sanderson RD (1997) Elevated levels of shed syndecan-1 correlate with tumour mass and decreased matrix metalloproteinase-9 activity in the serum of patients with multiple myeloma. Br J Haematol 99, 368371.
  • 111
    Kato M, Wang H, Kainulainen V, Fitzgerald ML, Ledbetter S, Ornitz DM & Bernfield M (1998) Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2. Nat Med 4, 691697.
  • 112
    Ilan N, Elkin M & Vlodavsky I (2006) Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol 38, 20182039.
  • 113
    Levy-Adam F, Feld S, Suss-Toby E, Vlodavsky I & Ilan N (2008) Heparanase facilitates cell adhesion and spreading by clustering of cell surface heparan sulfate proteoglycans. PLoS ONE 3, e2319.
  • 114
    Zcharia E, Jia J, Zhang X, Baraz L, Lindahl U, Peretz T, Vlodavsky I & Li JP (2009) Newly generated heparanase knock-out mice unravel co-regulation of heparanase and matrix metalloproteinases. PLoS ONE 4, e5181.
  • 115
    Yang Y, Macleod V, Bendre M, Huang Y, Theus AM, Miao HQ, Kussie P, Yaccoby S, Epstein J, Suva LJ et al. (2005) Heparanase promotes the spontaneous metastasis of myeloma cells to bone. Blood 105, 13031309.
  • 116
    Kelly T, Miao HQ, Yang Y, Navarro E, Kussie P, Huang Y, MacLeod V, Casciano J, Joseph L, Zhan F et al. (2003) High heparanase activity in multiple myeloma is associated with elevated microvessel density. Cancer Res 63, 87498756.
  • 117
    Barash U, Cohen-Kapaln V, Dowek J, Sanderson RD, Ilan N & Vlodavsky I (2010) Proteoglycans in health and disease: new concepts arising for heparanase function in tumour progression and metastasis. FEBS J 277, 38903903.
  • 118
    Purushothaman A, Chen L, Yang Y & Sanderson RD (2008) Heparanase stimulation of protease expression implicates it as a master regulator of the aggressive tumor phenotype in myeloma. J Biol Chem 283, 3262832636.
  • 119
    Purushothaman A, Uyama T, Kobayashi F, Yamada S, Sugahara K, Rapraeger AC & Sanderson RD (2010) Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis. Blood 115, 24492457.
  • 120
    Hjertner O, Qvigstad G, Hjorth-Hansen H, Seidel C, Woodliff J, Epstein J, Waage A, Sundan A & Börset M (2000) Expression of urokinase plasminogen activator and the urokinase plasminogen activator receptor in myeloma cells. Br J Haematol 109, 815822.
  • 121
    Sfiridaki A, Miyakis S, Tsirakis G, Alegakis A, Passam AM, Kandidaki E, Margioris AN & Alexandrakis MG (2005) Systemic levels of interleukin-6 and matrix metalloproteinase-9 in patients with multiple myeloma may be useful as prognostic indexes of bone disease. Clin Chem Lab Med 43, 934938.
  • 122
    Van de Broek I, Asosingh K, Allegaert V, Leleu X, Facon T, Vanderkerken K, Van Camp B & Van Riet I (2004) Bone marrow endothelial cells increase the invasiveness of human multiple myeloma cells through upregulation of MMP-9: evidence for a role of hepatocyte growth factor. Leukemia 18, 976982.
  • 123
    Van Valckenborgh E, Croucher PI, De Raeve H, Carron C, De Leenheer E, Blacher S, Devy L, Noël A, De Bruyne E, Asosingh K et al. (2004) Multifunctional role of matrix metalloproteinases in multiple myeloma: a study in the 5T2MM mouse model. Am J Pathol 165, 869878.
  • 124
    Nagase H (1997) Activation mechanisms of matrix metalloproteinases. Biol Chem 378, 151160.