SEARCH

SEARCH BY CITATION

References

  • 1
    Arai K, Teratani T, Kuruto-Niwa R, Yamada T & Nozawa R (2004) S100A9 expression in invasive ductal carcinoma of the breast: S100A9 expression in adenocarcinoma is closely associated with poor tumour differentiation. Eur J Cancer 40, 11791187.
  • 2
    Bi X, Lin Q, Foo TW, Joshi S, You T, Shen HM, Ong CN, Cheah PY, Eu KW & Hew CL (2006) Proteomic analysis of colorectal cancer reveals alterations in metabolic pathways: mechanism of tumorigenesis. Mol Cell Proteomics 5, 11191130.
  • 3
    Srivastava S, Verma M & Henson DE (2001) Biomarkers for early detection of colon cancer. Clin Cancer Res 7, 11181126.
  • 4
    Wallace HM & Caslake R (2001) Polyamines and colon cancer. Eur J Gastroenterol Hepatol 13, 10331039.
  • 5
    Yeatman TJ & Chambers AF (2003) Osteopontin and colon cancer progression. Clin Exp Metastasis 20, 8590.
  • 6
    Alfonso P, Nunez A, Madoz-Gurpide J, Lombardia L, Sanchez L & Casal JI (2005) Proteomic expression analysis of colorectal cancer by two-dimensional differential gel electrophoresis. Proteomics 5, 26022611.
  • 7
    Lou J, Fatima N, Xiao Z, Stauffer S, Smythers G, Greenwald P & Ali IU (2006) Proteomic profiling identifies cyclooxygenase-2-independent global proteomic changes by celecoxib in colorectal cancer cells. Cancer Epidemiol Biomarkers Prev 15, 15981606.
  • 8
    Skandarajah AR, Moritz RL, Tjandra JJ & Simpson RJ (2005) Proteomic analysis of colorectal cancer: discovering novel biomarkers. Expert Rev Proteomics 2, 681692.
  • 9
    Soreide K, Nedrebo BS, Knapp JC, Glomsaker TB, Soreide JA & Korner H (2009) Evolving molecular classification by genomic and proteomic biomarkers in colorectal cancer: potential implications for the surgical oncologist. Surg Oncol 18, 3150.
  • 10
    Alaiya AA, Roblick UJ, Franzen B, Bruch HP & Auer G (2003) Protein expression profiling in human lung, breast, bladder, renal, colorectal and ovarian cancers. J Chromatogr B Analyt Technol Biomed Life Sci 787, 207222.
  • 11
    Faure J & Dagher MC (2001) Interactions between Rho GTPases and Rho GDP dissociation inhibitor (Rho-GDI). Biochimie 83, 409414.
  • 12
    DerMardirossian C & Bokoch GM (2005) GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol 15, 356363.
  • 13
    Tian T, Hao J, Xu A, Hao J, Luo C, Liu C, Huang L, Xiao X & He D (2007) Determination of metastasis-associated proteins in non-small cell lung cancer by comparative proteomic analysis. Cancer Sci 98, 12651274.
  • 14
    Olofsson B (1999) Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cell Signal 11, 545554.
  • 15
    Dovas A & Couchman JR (2005) RhoGDI: multiple functions in the regulation of Rho family GTPase activities. Biochem J 390, 19.
  • 16
    Di-Poi N, Faure J, Grizot S, Molnar G, Pick E & Dagher MC (2001) Mechanism of NADPH oxidase activation by the Rac/Rho-GDI complex. Biochemistry 40, 1001410022.
  • 17
    Abo A, Pick E, Hall A, Totty N, Teahan CG & Segal AW (1991) Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature 353, 668670.
  • 18
    Bromberg Y, Shani E, Joseph G, Gorzalczany Y, Sperling O & Pick E (1994) The GDP-bound form of the small G protein Rac1 p21 is a potent activator of the superoxide-forming NADPH oxidase of macrophages. J Biol Chem 269, 70557058.
  • 19
    Arozarena I, Matallanas D & Crespo P (2001) Maintenance of CDC42 GDP-bound state by Rho-GDI inhibits MAP kinase activation by the exchange factor Ras-GRF. Evidence for Ras-GRF function being inhibited by Cdc42-GDP but unaffected by CDC42-GTP. J Biol Chem 276, 2187821884.
  • 20
    Gandhi PN, Gibson RM, Tong X, Miyoshi J, Takai Y, Konieczkowski M, Sedor JR & Wilson-Delfosse AL (2004) An activating mutant of Rac1 that fails to interact with Rho GDP-dissociation inhibitor stimulates membrane ruffling in mammalian cells. Biochem J 378, 409419.
  • 21
    Jones MB, Krutzsch H, Shu H, Zhao Y, Liotta LA, Kohn EC & Petricoin EF III (2002) Proteomic analysis and identification of new biomarkers and therapeutic targets for invasive ovarian cancer. Proteomics 2, 7684.
  • 22
    Guignard F, Mauel J & Markert M (1996) Phosphorylation of myeloid-related proteins MRP-14 and MRP-8 during human neutrophil activation. Eur J Biochem 241, 265271.
  • 23
    Hessian PA, Edgeworth J & Hogg N (1993) MRP-8 and MRP-14, two abundant Ca2+-binding proteins of neutrophils and monocytes. J Leukoc Biol 53, 197204.
  • 24
    Marionnet C, Bernerd F, Dumas A, Verrecchia F, Mollier K, Compan D, Bernard B, Lahfa M, Leclaire J, Medaisko C et al. (2003) Modulation of gene expression induced in human epidermis by environmental stress in vivo. J Invest Dermatol 121, 14471458.
  • 25
    Teigelkamp S, Bhardwaj RS, Roth J, Meinardus-Hager G, Karas M & Sorg C (1991) Calcium-dependent complex assembly of the myeloic differentiation proteins MRP-8 and MRP-14. J Biol Chem 266, 1346213467.
  • 26
    Shen J, Person MD, Zhu J, Abbruzzese JL & Li D (2004) Protein expression profiles in pancreatic adenocarcinoma compared with normal pancreatic tissue and tissue affected by pancreatitis as detected by two-dimensional gel electrophoresis and mass spectrometry. Cancer Res 64, 90189026.
  • 27
    Yao R, Lopez-Beltran A, Maclennan GT, Montironi R, Eble JN & Cheng L (2007) Expression of S100 protein family members in the pathogenesis of bladder tumors. Anticancer Res 27, 30513058.
  • 28
    Cross SS, Hamdy FC, Deloulme JC & Rehman I (2005) Expression of S100 proteins in normal human tissues and common cancers using tissue microarrays: S100A6, S100A8, S100A9 and S100A11 are all overexpressed in common cancers. Histopathology 46, 256269.
  • 29
    Ito Y, Arai K, Ryushi, Nozawa R, Yoshida H, Tomoda C, Uruno T, Miya A, Kobayashi K, Matsuzuka F et al. (2005) S100A9 expression is significantly linked to dedifferentiation of thyroid carcinoma. Pathol Res Pract 201, 551556.
  • 30
    Li C, Zhang F, Lin M & Liu J (2004) Induction of S100A9 gene expression by cytokine oncostatin M in breast cancer cells through the STAT3 signaling cascade. Breast Cancer Res Treat 87, 123134.
  • 31
    Boyd JH, Kan B, Roberts H, Wang Y & Walley KR (2008) S100A8 and S100A9 mediate endotoxin-induced cardiomyocyte dysfunction via the receptor for advanced glycation end products. Circ Res 102, 12391246.
  • 32
    Nagaraja GM, Othman M, Fox BP, Alsaber R, Pellegrino CM, Zeng Y, Khanna R, Tamburini P, Swaroop A & Kandpal RP (2006) Gene expression signatures and biomarkers of noninvasive and invasive breast cancer cells: comprehensive profiles by representational difference analysis, microarrays and proteomics. Oncogene 25, 23282338.
  • 33
    Seth A, Kitching R, Landberg G, Xu J, Zubovits J & Burger AM (2003) Gene expression profiling of ductal carcinomas in situ and invasive breast tumors. Anticancer Res 23, 20432051.
  • 34
    Hermani A, Hess J, De Servi B, Medunjanin S, Grobholz R, Trojan L, Angel P & Mayer D (2005) Calcium-binding proteins S100A8 and S100A9 as novel diagnostic markers in human prostate cancer. Clin Cancer Res 11, 51465152.
  • 35
    Tomasetto C, Moog-Lutz C, Regnier CH, Schreiber V, Basset P & Rio MC (1995) Lasp-1 (MLN 50) defines a new LIM protein subfamily characterized by the association of LIM and SH3 domains. FEBS Lett 373, 245249.
  • 36
    Tomasetto C, Regnier C, Moog-Lutz C, Mattei MG, Chenard MP, Lidereau R, Basset P & Rio MC (1995) Identification of four novel human genes amplified and overexpressed in breast carcinoma and localized to the q11–q21.3 region of chromosome 17. Genomics 28, 367376.
  • 37
    Chew CS, Parente JA Jr, Zhou C, Baranco E & Chen X (1998) Lasp-1 is a regulated phosphoprotein within the cAMP signaling pathway in the gastric parietal cell. Am J Physiol 275, C56C67.
  • 38
    Chew CS, Parente JA Jr, Chen X, Chaponnier C & Cameron RS (2000) The LIM and SH3 domain-containing protein, lasp-1, may link the cAMP signaling pathway with dynamic membrane restructuring activities in ion transporting epithelia. J Cell Sci 113, 20352045.
  • 39
    Chew CS, Chen X, Parente JA Jr, Tarrer S, Okamoto C & Qin HY (2002) Lasp-1 binds to non-muscle F-actin in vitro and is localized within multiple sites of dynamic actin assembly in vivo. J Cell Sci 115, 47874799.
  • 40
    Grunewald TG, Kammerer U, Schulze E, Schindler D, Honig A, Zimmer M & Butt E (2006) Silencing of LASP-1 influences zyxin localization, inhibits proliferation and reduces migration in breast cancer cells. Exp Cell Res 312, 974982.
  • 41
    Grunewald TG, Kammerer U, Winkler C, Schindler D, Sickmann A, Honig A & Butt E (2007) Overexpression of LASP-1 mediates migration and proliferation of human ovarian cancer cells and influences zyxin localisation. Br J Cancer 96, 296305.
  • 42
    Zhao L, Liu L, Wang S, Zhang YF, Yu L & Ding YQ (2007) Differential proteomic analysis of human colorectal carcinoma cell lines metastasis-associated proteins. J Cancer Res Clin Oncol 133, 771782.
  • 43
    Ramagli LS (1999) Quantifying protein in 2-D PAGE solubilization buffers. Methods Mol Biol 112, 99103.
  • 44
    Zhao L, Wang H, Li J, Liu Y & Ding Y (2008) Overexpression of Rho GDP-dissociation inhibitor alpha is associated with tumor progression and poor prognosis of colorectal cancer. J Proteome Res 7, 39944003.
  • 45
    Coppola D, Szabo M, Boulware D, Muraca P, Alsarraj M, Chambers AF & Yeatman TJ (2004) Correlation of osteopontin protein expression and pathological stage across a wide variety of tumor histologies. Clin Cancer Res 10, 184190.