• 1
    Hasnain S (2004) Synchrotron techniques for metalloproteins and human disease in post genome era. J Synchrotron Radiat 11, 711.
  • 2
    Bolognin S, Messori L & Zatta P (2009) Metal ion physiopathology in neurodegenerative disorders. Neuromol Med 11, 223238.
  • 3
    Lenaz G & Genova ML (2010) Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject. Antioxid Redox Signal 12, 9611008.
  • 4
    Fromme P & Grotjohann I (2008) Overview of photosynthesis. In Photosynthetic Protein Complexes: A Structural Approach (Fromme P ed), pp. 122. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.
  • 5
    Hervás M, Navarro JA & De la Rosa MA (2003) Electron transfer between membrane complexes and soluble proteins in photosynthesis. Acc Chem Res 36, 798805.
  • 6
    Knaff DB & Hirasawa M (1991) Ferredoxin-dependent chloroplast enzymes. Biochim Biophys Acta 1056, 93125.
  • 7
    Denisov IG, Makris TM, Sligar SG & Schlichting I (2005) Structure and chemistry of cytochrome P450. Chem Rev 105, 22532278.
  • 8
    Tyurina YY, Kini V, Tyurin VA, Vlasova II, Jiang J, Kapralov AA, Belikova NA, Yalowich JC, Kurnikov IV & Kagan VE (2006) Mechanisms of cardiolipin oxidation by cytochrome c: relevance to pro- and antiapoptotic functions of etoposide. Mol Pharmacol 70, 706717.
  • 9
    Ott M, Robertson JD, Gogvadze V, Zhivotovsky B & Orrenius S (2002) Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci USA 99, 12591263.
  • 10
    Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES & Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479489.
  • 11
    Boehning D, Patterson RL, Sedaghat L, Glebova NO, Kurosaki T & Snyder SH (2003) Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol 5, 10511061.
  • 12
    Godoy LC, Muñoz-Pinedo C, Castro L, Cardaci S, Schonhoff CM, King M, Tórtora V, Marín M, Miao Q, Jiang JF et al. (2009) Disruption of the M80–Fe ligation stimulates the translocation of cytochrome c to the cytoplasm and nucleus in nonapoptotic cells. Proc Natl Acad Sci USA 106, 26532658.
  • 13
    Wang Z-B, Liu Y-Q & Cui Y-F (2005) Pathways to caspase activation. Cell Biol Int 29, 489496.
  • 14
    García-Heredia JM, Díaz-Moreno I, Nieto PM, Orzáez M, Kocanis S, Teixeira M, Pérez-Payá E, Díaz-Quintana A & De la Rosa MA (2010) Nitration of tyrosine 74 prevents human cytochrome c to play a key role in apoptosis signaling by blocking caspase-9 activation. Biochim Biophys Acta 1797, 981993.
  • 15
    Pecina P, Borisenko GG, Belikova NA, Tyurina YY, Pecinova A, Lee I, Samhan-Arias AK, Przyklenk K, Kagan VE & Hüttemann M (2010) Phosphomimetic substitution of cytochrome c tyrosine 48 decreases respiration and binding to cardiolipin and abolishes ability to trigger downstream caspase activation. Biochemistry 49, 67056714.
  • 16
    Khoa Ly H, Sezer M, Wisitruangsakul N, Feng J-J, Kranich A, Millo D, Weidinger IM, Zebger I, Murgida DH & Hildebrandt P (2011) Surface-enhanced vibrational spectroscopy for probing transient interactions of proteins with biomimetic interfaces: electric field effects on structure, dynamics and function of cytochrome c. FEBS J 278, 13821390.
  • 17
    Neupert W & Herrmann JM (2007) Translocation of proteins into mitochondria. Annu Rev Biochem 76, 723749.
  • 18
    Sideris DP, Petrakis N, Katrakili N, Mikropoulou D, Gallo A, Ciofi-Baffoni S, Banci L, Bertini I & Tokatlidis K (2009) A novel intermembrane space-targeting signal docks cysteines onto Mia40 during mitochondrial oxidative folding. J Cell Biol 187, 10071022.
  • 19
    Stengel A, Benz JP, Soll J & Bölter B (2010) Redox-regulation of protein import into chloroplasts and mitochondria. Similarities and differences. Plant Signal Behav 5, 105109.
  • 20
    Morgan B, Ang SK, Yan G & Lu H (2009) Zinc can play chaperone-like and inhibitor roles during import of mitochondrial small Tim proteins. J Biol Chem 284, 68186825.
  • 21
    Mesecke N, Bihlmaier K, Grumbt B, Longen S, Terziyska N, Hell K & Herrmann JM (2008) The zinc-binding protein Hot13 promotes oxidation of the mitochondrial import receptor Mia40. EMBO Rep 9, 11071113.
  • 22
    Terziyska N, Grumbt B, Kozany C & Hell K (2009) Structural and functional roles of the conserved cysteine residues of the redox-regulated import receptor Mia40 in the intermembrane space of mitochondria. J Biol Chem 284, 13531363.
  • 23
    Castielli O, De la Cerda B, Navarro JA, Hervás M & De la Rosa MA (2009) Proteomic analyses of the response of cyanobacteria to different stress conditions. FEBS Lett 583, 17531758.
  • 24
    De la Cerda B, Castielli O, Durán RV, Navarro JA, Hervás M & De la Rosa MA (2007) A proteomic approach to iron and copper homeostasis in cyanobacteria. Brief Funct Genomic Proteomic 6, 322329.
  • 25
    Finney LA & O’Halloran TV (2003) Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science 300, 931936.
  • 26
    Morin I, Gudin S, Mintz E & Cuillel M (2009) Dissecting the role of the N-terminal metal-binding domains in activating the yeast copper ATPase in vivo. FEBS J 276, 44834495.
  • 27
    Banci L, Bertini I & Ciofi-Baffoni S (2009) Copper trafficking in biology: an NMR approach. HFSP J 3, 165175.
  • 28
    Banci L, Bertini I, McGreevy KS & Rosato A (2010) Molecular recognition in copper trafficking. Nat Prod Rep 27, 695710.
  • 29
    Nooren IMA & Thornton JM (2003) Diversity of protein–protein interactions. EMBO J 22, 34863492.
  • 30
    Bashir Q, Scanu S & Ubbink M (2011) Dynamics in electron transfer protein complexes. FEBS J 278, 13911400.
  • 31
    Ubbink M (2009) The courtship of proteins: understanding the encounter complex. FEBS Lett 583, 10601066.
  • 32
    Díaz-Quintana A, Hervás M, Navarro JA & De la Rosa MA (2008) Plastocyanin and cytochrome c6: the soluble electron carriers between the cytochrome b6f complex and photosystem I. In Structure of Photosynthetic Proteins (Fromme P ed), pp. 181200. Wiley-VCH, Weinheim, Germany.
  • 33
    Díaz-Moreno I, Díaz-Quintana A, De la Rosa MA & Ubbink M (2005) Structure of the complex between plastocyanin and cytochrome f from the cyanobacterium Nostoc sp. PCC 7119 as determined by paramagnetic NMR: the balance between electrostatic and hydrophobic interactions within the transient complex determines the relative orientation of the two proteins. J Biol Chem 280, 1890818915.
  • 34
    Díaz-Moreno I, Díaz-Quintana A, Subías G, Mairs T, De la Rosa MA & Díaz-Moreno S (2006) Detecting transient protein–protein interactions by X-ray absorption spectroscopy: the cytochrome c6–photosystem I complex. FEBS Lett 580, 30233028.
  • 35
    Díaz-Moreno I, Díaz-Quintana A, Díaz-Moreno S, Subías G & De la Rosa MA (2006) Transient binding of plastocyanin to its physiological redox partners modifies the copper site geometry. FEBS Lett 580, 61876194.
  • 36
    Díaz-Moreno I, Díaz-Quintana A, De la Rosa MA, Crowley PB & Ubbink M (2005) Different modes of interaction in cyanobacterial complexes of plastocyanin and cytochrome f. Biochemistry 44, 31763183.
  • 37
    Ellis RJ (2001) Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr Opin Struct Biol 11, 114119.
  • 38
    Zhou H-X, Rivas GN & Minton AP (2008) Macromolecular crowding and confinement: biochemical, biophysical and potential physiological consequences. Annu Rev Biophys 37, 375397.
  • 39
    Gifford JL, Walsh MP & Vogel HJ (2007) Structures and metal-ion-binding properties of the Ca2+-binding helix–loop–helix EF-hand motifs. Biochem J 405, 199221.
  • 40
    Weber RE, Campbell KL, Fago A, Malte H & Jensen FB (2010) ATP-induced temperature independence of hemoglobin–O2 affinity in heterothermic billfish. J Exp Biol 213, 15791585.
  • 41
    Lange C, Cornvik T, Díaz-Moreno I & Ubbink M (2005) The transient complex of poplar plastocyanin with cytochrome f: effects of ionic strength and pH. Biochim Biophys Acta 1707, 179188.
  • 42
    Hutchens TW & Yip T-T (1991) Protein interactions with surface-immobilized metal ions: structure-dependent variations in affinity and binding capacity with temperature and urea concentration. J Inorg Biochem 42, 105118.
  • 43
    Furukawa Y & O’Halloran TV (2006) Posttranslational modifications in Cu,Zn-superoxide dismutase and mutations associated with amyotrophic lateral sclerosis. Antioxid Redox Signal 8, 847867.
  • 44
    Palacios F, Cota G, Horjales S, Lima A, Battistoni J, Sotelo-Silveira J & Marín M (2010) An antibody-based affinity chromatography tool to assess Cu, Zn superoxide dismutase (SOD) G93A structural complexity in vivo. Biotechnol J 5, 328334.
  • 45
    Rodríguez-Roldán V, García-Heredia JM, Navarro JA, De la Rosa MA & Hervás M (2008) Effect of nitration on the physicochemical and kinetic features of wild-type and monotyrosine mutants of human respiratory cytochrome c. Biochemistry 47, 1237112379.
  • 46
    Aebersold R & Mann M (2003) Mass spectrometry-based proteomics. Nature 422, 198207.
  • 47
    Becker JS & Jakubowski N (2009) The synergy of elemental and biomolecular mass spectrometry: new analytical strategies in life sciences. Chem Soc Rev 38, 19691983.
  • 48
    Becker JS, Zoriy M, Matusch A, Wu B, Salber D, Palm C & Becker JS (2010) Bioimaging of metals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Mass Spectrom Rev 29, 156175.
  • 49
    Figeys D, McBroom LD & Moran MF (2001) Mass spectrometry for the study of protein–protein interactions. Methods 24, 230239.
  • 50
    Guerrero C, Tagwerker C, Kaiser P & Huang L (2006) An integrated mass spectrometry-based proteomic approach. Mol Cell Proteomics 5, 366378.
  • 51
    Woodcock SA, Jones RC, Edmondson RD & Malliri A (2009) A modified tandem affinity purification technique identifies that 14-3-3 proteins interact with Tiam1, an interaction which controls Tiam1 stability. J Proteome Res 8, 56295641.
  • 52
    Vasilescu J, Guo X & Kast J (2004) Identification of protein–protein interactions using in vivo cross-linking and mass spectrometry. Proteomics 4, 38453854.
  • 53
    Price D, Park I & Avraham H (2003) Methods for the study of protein–protein interactions in cancer cell biology. Methods Mol Biol 218, 255267.
  • 54
    Jahn O, Eckart K, Brauns O, Tezval H & Spiess J (2002) The binding protein of corticotropin-releasing factor: ligand-binding site and subunit structure. Proc Natl Acad Sci USA 99, 1205512060.
  • 55
    Mari P-O, Florea BI, Persengiev SP, Verkaik NS, Brüggenwirth HT, Modesti M, Giglia-Mari G, Bezstarosti K, Demmers JAA, Luider TM et al. (2006) Dynamic assembly of end-joining complexes requires interaction between Ku70/80 and XRCC4. Proc Natl Acad Sci USA 103, 1859718602.
  • 56
    Dorman G & Prestwich GD (1994) Benzophenone photophores in biochemistry. Biochemistry 33, 56615673.
  • 57
    Hatanaka Y, Nakayama H & Kanaoka Y (1996) Diazirine-based photoaffinity labeling: chemical approach to biological interfaces. Rev Heteroatom Chem 14, 213243.
  • 58
    Vodovozova E (2007) Photoaffinity labeling and its application in structural biology. Biochemistry (Mosc) 72, 120.
  • 59
    Gilbert BA & Rando RR (1995) Modular design of biotinylated photoaffinity probes: synthesis and utilization of a biotinylated pepstatin photoprobe. J Am Chem Soc 117, 80618066.
  • 60
    Weber PJ & Beck-Sickinger AG (1997) Comparison of the photochemical behavior of four different photoactivatable probes. J Pept Res 49, 375383.
  • 61
    Kobayashi T & Hearing VJ (2007) Direct interaction of tyrosinase with Tyrp1 to form heterodimeric complexes in vivo. J Cell Sci 120, 42614268.
  • 62
    Zhang H, Tang X, Munske GR, Tolic N, Anderson GA & Bruce JE (2009) Identification of protein–protein interactions and topologies in living cells with chemical cross-linking and mass spectrometry. Mol Cell Proteomics 8, 409420.
  • 63
    Suchanek M, Radzikowska A & Thiele C (2005) Photo-leucine and photo-methionine allow identification of protein–protein interactions in living cells. Nat Methods 2, 261268.
  • 64
    Vila-Perelló M, Pratt MR, Tulin F & Muir TW (2007) Covalent capture of phospho-dependent protein oligomerization by site-specific incorporation of a diazirine photo-cross-linker. J Am Chem Soc 129, 80688069.
  • 65
    Vermeulen M, Hubner NC & Mann M (2008) High confidence determination of specific protein–protein interactions using quantitative mass spectrometry. Curr Opin Biotechnol 19, 331337.
  • 66
    Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH & Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17, 994999.
  • 67
    Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S et al. (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3, 11541169.
  • 68
    Mann M (2006) Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 7, 952958.
  • 69
    Selbach M & Mann M (2006) Protein interaction screening by quantitative immunoprecipitation combined with knockdown (QUICK). Nat Methods 3, 981983.
  • 70
    Guerrero C, Milenkovic T, Przulj N, Kaiser P & Huang L (2008) Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis. Proc Natl Acad Sci USA 105, 1333313338.
  • 71
    Natsume T, Nakayama H & Isobe T (2001) BIA MS: biomolecular interaction analysis for functional proteomics. Trends Biotechnol 19, 2833.
  • 72
    Buijs J & Franklin GC (2005) SPR-MS in functional proteomics. Brief Funct Genomic Proteomic 4, 3947.
  • 73
    Kodadek T (2001) Protein microarrays: prospects and problems. Chem Biol 8, 105115.
  • 74
    Doi N, Takashima H, Kinjo M, Sakata K, Kawahashi Y, Oishi Y, Oyama R, Miyamoto-Sato E, Sawasaki T, Endo Y et al. (2002) Novel fluorescence labeling and high-throughput assay technologies for in vitro analysis of protein interactions. Genome Res 12, 487492.
  • 75
    Prudêncio M & Ubbink M (2004) Transient complexes of redox proteins: structural and dynamic details from NMR studies. J Mol Recognit 17, 524539.
  • 76
    Tang C, Iwahara J & Clore GM (2006) Visualization of transient encounter complexes in protein–protein association. Nature 444, 383386.
  • 77
    Volkov AN, Worrall JAR, Holtzmann E & Ubbink M (2006) From the cover: solution structure and dynamics of the complex between cytochrome c and cytochrome c peroxidase determined by paramagnetic NMR. Proc Natl Acad Sci USA 103, 1894518950.
  • 78
    Siegel RM, Chan FK-M, Zacharias DA, Swofford R, Holmes KL, Tsien RY & Lenardo MJ (2000) Measurement of molecular interactions in living cells by fluorescence resonance energy transfer between variants of the green fluorescent protein. Sci STKE 38, pl1.
  • 79
    Friedl P, Wolf K, Harms G & von Andrian UH (2001) Biological second and third harmonic generation microscopy. In Current Protocols in Cell Biology (Harms G & von Andrian UH eds), p. 4.15.1. Wiley, USA.
  • 80
    Mounicou S, Szpunar J & Lobinski R (2009) Metallomics: the concept and methodology. Chem Soc Rev 38, 11191138.
  • 81
    Cook JD, PennerHahn JE, Stemmler TL & Bhanu PJ (2008) Structure and dynamics of metalloproteins in live cells. Methods Cell Biol 90, 199216.
  • 82
    Fahrni CJ (2007) Biological applications of X-ray fluorescence microscopy: exploring the subcellular topography and speciation of transition metals. Curr Opin Chem Biol 11, 121127.
  • 83
    Miller LM, Wang Q, Telivala TP, Smith RJ, Lanzirotti A & Miklossy J (2006) Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with [beta]-amyloid deposits in Alzheimer’s disease. J Struct Biol 155, 3037.