• 1
    de Bold AJ, Borenstein HB, Veress AT & Sonnenberg H (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28, 8994.
  • 2
    Currie MG, Geller DM, Cole BR, Boylan JG, YuSheng W, Holmberg SW & Needleman P (1983) Bioactive cardiac substances: potent vasorelaxant activity in mammalian atria. Science 221, 7173.
  • 3
    Grammer RT, Fukumi H, Inagami T & Misono KS (1983) Rat atrial natriuretic factor. Purification and vasorelaxant activity. Biochem Biophys Res Commun 116, 696703.
  • 4
    Itoh H, Pratt RE & Dzau VJ (1990) Atrial natriuretic polypeptide inhibits hypertrophy of vascular smooth muscle cells. J Clin Invest 86, 16901697.
  • 5
    Lopez MJ, Wong SK, Kishimoto I, Dubois S, Mach V, Friesen J, Garbers DL & Beuve A (1995) Salt-resistant hypertension in mice lacking the guanylyl cyclase-A receptor for atrial natriuretic peptide. Nature 378, 6568.
  • 6
    Oliver PM, Fox JE, Kim R, Rockman HA, Kim HS, Reddick RL, Pandey KN, Milgram SL, Smithies O & Maeda N (1997) Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc Natl Acad Sci USA 94, 1473014735.
  • 7
    Kishimoto I, Rossi K & Garbers DL (2001) A genetic model provides evidence that the receptor for atrial natriuretic peptide (guanylyl cyclase-A) inhibits cardiac ventricular myocyte hypertrophy. Proc Natl Acad Sci USA 98, 27032706.
  • 8
    Kilic A, Bubikat A, Gassner B, Baba HA & Kuhn M (2007) Local actions of atrial natriuretic peptide counteract angiotensin II stimulated cardiac remodeling. Endocrinology 148, 41624169.
  • 9
    Nakao K, Ogawa Y, Suga S & Imura H (1992) Molecular biology and biochemistry of the natriuretic peptide system. I: natriuretic peptides. J Hypertens 10, 907912.
  • 10
    Ogawa Y, Nakao K, Nakagawa O, Komatsu Y, Hosoda K, Suga S, Arai H, Nagata K, Yoshida N & Imura H (1992) Human C-type natriuretic peptide. Characterization of the gene and peptide. Hypertension 19, 809813.
  • 11
    Suga S, Nakao K, Itoh H, Komatsu Y, Ogawa Y, Hama N & Imura H (1992) Endothelial production of C-type natriuretic peptide and its marked augmentation by transforming growth factor-beta. Possible existence of ‘vascular natriuretic peptide system’. J Clin Invest 90, 11451149.
  • 12
    Hagiwara H, Sakaguchi H, Itakura M, Yoshimoto T, Furuya M, Tanaka S & Hirose S (1994) Autocrine regulation of rat chondrocyte proliferation by natriuretic peptide C and its receptor, natriuretic peptide receptor-B. J Biol Chem 269, 1072910733.
  • 13
    Kishimoto I, Tokudome T, Nakao K & Kangawa K (2011) The cardiovascular significance of the natriuretic peptide system. FEBS J, in press.
  • 14
    Pandey KN (2011) The functional genomics of guanylyl cyclase/natriuretic peptide receptor-A: perspectives and paradigms. FEBS J 278, 17921807.
  • 15
    Bovy PR (1990) Structure activity in the atrial natriuretic peptide family. Med Res Rev 10, 115142.
  • 16
    Chinkers M, Garbers DL, Chang MS, Lowe DG, Chin HM, Goeddel DV & Schulz S (1989) A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature 338, 7883.
  • 17
    Ogawa H, Qiu Y, Ogata CM & Misono KS (2004) Crystal structure of hormone-bound atrial natriuretic peptide receptor extracellular domain: rotation mechanism for transmembrane signal transduction. J Biol Chem 279, 2862528631.
  • 18
    Ogawa H, Qiu Y, Philo JS, Arakawa T, Ogata CM & Misono KS (2010) Reversibly bound chloride in the atrial natriuretic peptide receptor hormone-binding domain: possible allosteric regulation and a conserved structural motif for the chloride-binding site. Protein Sci 19, 544557.
  • 19
    Abe T & Misono KS (1992) Proteolytic cleavage of atrial natriuretic factor receptor in bovine adrenal membranes by endogenous metalloendopeptidase. Effects on guanylate cyclase activity and ligand-binding specificity. Eur J Biochem 209, 717724.
  • 20
    Huo X, Abe T & Misono KS (1999) Ligand binding-dependent limited proteolysis of the atrial natriuretic peptide receptor: juxtamembrane hinge structure essential for transmembrane signal transduction. Biochemistry 38, 1694116951.
  • 21
    Kurose H, Inagami T & Ui M (1987) Participation of adenosine 5′-triphosphate in the activation of membrane-bound guanylate cyclase by the atrial natriuretic factor. FEBS Lett 219, 375379.
  • 22
    Chinkers M, Singh S & Garbers DL (1991) Adenine nucleotides are required for activation of rat atrial natriuretic peptide receptor/guanylyl cyclase expressed in a baculovirus system. J Biol Chem 266, 40884093.
  • 23
    Potter LR & Hunter T (1998) Phosphorylation of the kinase homology domain is essential for activation of the A-type natriuretic peptide receptor. Mol Cell Biol 18, 21642172.
  • 24
    Schroter J, Zahedi RP, Hartmann M, Gassner B, Gazinski A, Waschke J, Sickmann A & Kuhn M (2010) Homologous desensitization of guanylyl cyclase A, the receptor for atrial natriuretic peptide, is associated with a complex phosphorylation pattern. FEBS J 277, 24402453.
  • 25
    Potter LR & Garbers DL (1992) Dephosphorylation of the guanylyl cyclase-A receptor causes desensitization. J Biol Chem 267, 1453114534.
  • 26
    Takahashi Y, Nakayama T, Soma M, Izumi Y & Kanmatsuse K (1998) Organization of the human natriuretic peptide receptor A gene. Biochem Biophys Res Commun 246, 736739.
  • 27
    Yamaguchi M, Rutledge LJ & Garbers DL (1990) The primary structure of the rat guanylyl cyclase A/atrial natriuretic peptide receptor gene. J Biol Chem 265, 2041420420.
  • 28
    Misono KS, Sivasubramanian N, Berkner K & Zhang X (1999) Expression and purification of the extracellular ligand-binding domain of the atrial natriuretic peptide (ANP) receptor. Biochemistry 38, 516523.
  • 29
    Takayanagi R, Inagami T, Snajdar RM, Imada T, Tamura M & Misono KS (1987) Two distinct forms of receptors for atrial natriuretic factor in bovine adrenocortical cells. Purification, ligand binding, and peptide mapping. J Biol Chem 262, 1210412113.
  • 30
    Miyagi M & Misono KS (2000) Disulfide bond structure of the atrial natriuretic peptide receptor extracellular domain: conserved disulfide bonds among guanylate cyclase-coupled receptors. Biochim Biophys Acta 1478, 3038.
  • 31
    Miyagi M, Zhang X & Misono KS (2000) Glycosylation sites in the atrial natriuretic peptide receptor oligosaccharide structures are not required for hormone binding. Eur J Biochem 267, 57585768.
  • 32
    Koller KJ, Lipari MT & Goeddel DV (1993) Proper glycosylation and phosphorylation of the type A natriuretic peptide receptor are required for hormone-stimulated guanylyl cyclase activity. J Biol Chem 268, 59976003.
  • 33
    Abe T, Nishiyama K, Snajdar R, He X & Misono KS (1993) Aortic smooth muscle contains guanylate-cyclase-coupled 130-kDa atrial natriuretic factor receptor as predominant receptor form. Spontaneous switching to 60-kDa C-receptor upon cell culturing. Eur J Biochem 217, 295304.
  • 34
    van den Akker F, Zhang X, Miyagi M, Huo X, Misono KS & Yee VC (2000) Structure of the dimerized hormone-binding domain of a guanylyl-cyclase-coupled receptor. Nature 406, 101104.
  • 35
    Qiu Y, Ogawa H, Miyagi M & Misono KS (2004) Constitutive activation and uncoupling of the atrial natriuretic peptide receptor by mutations at the dimer interface. Role of the dimer structure in signalling. J Biol Chem 279, 61156123.
  • 36
    Misono KS, Ogawa H, Qiu Y & Ogata CM (2005) Structural studies of the natriuretic peptide receptor: a novel hormone-induced rotation mechanism for transmembrane signal transduction. Peptides 26, 957968.
  • 37
    Misono KS (2000) Atrial natriuretic factor binding to its receptor is dependent on chloride concentration: a possible feedback-control mechanism in renal salt regulation. Circ Res 86, 11351139.
  • 38
    Goetz KL (1990) Evidence that atriopeptin is not a physiological regulator of sodium excretion. Hypertension 15, 919.
  • 39
    Goetz KL (1990) The tenuous relationship between atriopeptin and sodium excretion. Acta Physiol Scand Suppl 591, 8896.
  • 40
    Drummer C, Franck W, Heer M, Forssmann WG, Gerzer R & Goetz K (1996) Postprandial natriuresis in humans: further evidence that urodilatin, not ANP, modulates sodium excretion. Am J Physiol 270, F301F310.
  • 41
    Bie P, Wang BC, Leadley RJ Jr & Goetz KL (1988) Hemodynamic and renal effects of low-dose infusions of atrial peptide in awake dogs. Am J Physiol 254, R161R169.
  • 42
    Burnett JC Jr, Kao PC, Hu DC, Heser DW, Heublein D, Granger JP, Opgenorth TJ & Reeder GS (1986) Atrial natriuretic peptide elevation in congestive heart failure in the human. Science 231, 11451147.
  • 43
    Koepke JP & DiBona GF (1987) Blunted natriuresis to atrial natriuretic peptide in chronic sodium-retaining disorders. Am J Physiol 252, F865F871.
  • 44
    Warner L, Skorecki K, Blendis LM & Epstein M (1993) Atrial natriuretic factor and liver disease [published erratum appears in Hepatology 1993 Jun;17(6):1174]. Hepatology 17, 500513.
  • 45
    Field LJ, Veress AT, Steinhelper ME, Cochrane K & Sonnenberg H (1991) Kidney function in ANF-transgenic mice: effect of blood volume expansion. Am J Physiol 260, R1R5.
  • 46
    Veress AT, Field LJ, Steinhelper ML & Sonnenberg H (1992) Effect of potassium infusion on renal function in ANF-transgenic mice. Clin Invest Med 15, 483488.
  • 47
    Veress AT, Honrath U, Chong CK & Sonnenberg H (1997) Renal resistance to ANF in salt-depleted rats is independent of sympathetic or ANG-aldosterone systems. Am J Physiol 272, F545F550.
  • 48
    Hanley MJ & Kokko JP (1978) Study of chloride transport across the rabbit cortical collecting tubule. J Clin Invest 62, 3944.
  • 49
    Rose BH & Rennke HG (1994) Review of renal physiology. In Renal Pathophysiology – the Essentials (Coryell P ed), pp 115. Williams & Wilkins, Baltimore, MD.
  • 50
    Moe OW, Berry CA & Rector FC (2000) Renal transport of glucose, amino acid, sodium, chloride, and water. In The Kidney, 6th edn (Brenner BM eds), pp. 375415. Saunders, Philadelphia, PA.
  • 51
    Forssmann WG, Richter R & Meyer M (1998) The endocrine heart and natriuretic peptides: histochemistry, cell biology, and functional aspects of the renal urodilatin system. Histochem Cell Biol 110, 335357.
  • 52
    Forssmann W, Meyer M & Forssmann K (2001) The renal urodilatin system: clinical implications. Cardiovasc Res 51, 450462.
  • 53
    Hirsch JR, Kruhoffer M, Adermann K, Heitland A, Maronde E, Meyer M, Forssmann WG, Herter P, Plenz G & Schlatter E (2001) Cellular localization, membrane distribution, and possible function of guanylyl cyclases A and 1 in collecting ducts of rat. Cardiovasc Res 51, 553561.
  • 54
    Ritter D, Dean AD, Gluck SL & Greenwald JE (1995) Natriuretic peptide receptors A and B have different cellular distributions in rat kidney. Kidney Int 48, 57585766.
  • 55
    Ando K, Umetani N, Kurosawa T, Takeda S, Katoh Y & Marumo F (1988) Atrial natriuretic peptide in human urine. Klin Wochenschr 66, 768772.
  • 56
    Suzuki Y, Suzuki H, Ohtake R, Kobori H, Tsuchiya T, Hashigami Y & Shimoda S (1988) Changes in the plasma and urine alpha human atrial natriuretic peptide (alpha hANP) concentration in patients with thyroid disorders. Endocrinol Jpn 35, 907913.
  • 57
    Suzuki Y, Suzuki H, Ohtake R, Tsuchiya T, Muramatsu H, Hashigami Y, Kobori H & Shimoda S (1988) Plasma and urine concentrations of atrial natriuretic peptide in patients with diabetes mellitus. Pancreas 3, 404408.
  • 58
    Marumo F, Sakamoto H, Ando K & Ishigami T (1990) Concentrations of atrial natriuretic peptide in plasma and urine of kidney disease patients. Clin Chem 36, 16501653.
  • 59
    Totsune K, Takahashi K, Satoh F, Sone M, Ohneda M, Satoh C, Murakami O & Mouri T (1996) Urinary immunoreactive brain natriuretic peptide in patients with renal disease. Regul Pept 63, 141147.
  • 60
    Bentzen H, Pedersen RS, Nyvad O & Pedersen EB (2004) Effect of exercise on natriuretic peptides in plasma and urine in chronic heart failure. Int J Cardiol 93, 121130.
  • 61
    Mattingly MT, Brandt RR, Heublein DM, Wei CM, Nir A & Burnett JC Jr (1994) Presence of C-type natriuretic peptide in human kidney and urine. Kidney Int 46, 744747.
  • 62
    Carone FA, Peterson DR, Oparil S & Pullman TN (1979) Renal tubular transport and catabolism of proteins and peptides. Kidney Int 16, 271278.
  • 63
    Maack T, Johnson V, Kau ST, Figueiredo J & Sigulem D (1979) Renal filtration, transport, and metabolism of low-molecular-weight proteins: a review. Kidney Int 16, 251270.
  • 64
    Potter LR (2011) Natriuretic peptide metabolism, clearance and degradation. FEBS J 278, 18081817.
  • 65
    Peterson DR, Oparil S, Flouret G & Carone FA (1977) Handling of angiotensin II and oxytocin by renal tubular segments perfused in vitro. Am J Physiol 232, F319F324.
  • 66
    Lindheimer MD, Reinharz A, Grandchamp A & Vallotton MB (1980) Fate of vasopressin perfused into nephrons of Wistar and Brattleboro (diabetes insipidus) rats. Clin Sci (Lond) 58, 139144.
  • 67
    Carone FA, Peterson DR & Flouret G (1982) Renal tubular processing of small peptide hormones. J Lab Clin Med 100, 114.
  • 68
    Ng LL, Geeranavar S, Jennings SC, Loke I & O’Brien RJ (2004) Diagnosis of heart failure using urinary natriuretic peptides. Clin Sci (Lond) 106, 129133.
  • 69
    Cortes R, Rivera M, Salvador A, Garcia de Burgos F, Bertomeu V, Rosello-Lleti E, Martinez-Dolz L, Paya R, Almenar L & Portoles M (2007) Urinary B-type natriuretic peptide levels in the diagnosis and prognosis of heart failure. J Card Fail 13, 549555.
  • 70
    Light DB, Corbin JD & Stanton BA (1990) Dual ion-channel regulation by cyclic GMP and cyclic GMP-dependent protein kinase. Nature 344, 336339.
  • 71
    Scavone C, Scanlon C, McKee M & Nathanson JA (1995) Atrial natriuretic peptide modulates sodium and potassium-activated adenosine triphosphatase through a mechanism involving cyclic GMP and cyclic GMP-dependent protein kinase. J Pharmacol Exp Ther 272, 10361043.
  • 72
    Lincoln TM (1994) Renal cyclin GMP-regulated ion channels. In Cyclic GMP: Biochemistry, Physiology and Pathophysiology (Lincoln TM ed), pp. 7273. R. G. Landes Company, Georgetown, TX.
  • 73
    Ogawa H, Qiu Y, Huang L, Tam-Chang SW, Young HS & Misono KS (2009) Structure of the atrial natriuretic peptide receptor extracellular domain in the unbound and hormone-bound states by single-particle electron microscopy. FEBS J 276, 13471355.
  • 74
    Garrett RH & Grisham CM (2009) Receptor guanylyl cyclases mediate effects of natriuretic hormones. In Biochemistry, 4th edn (Garrett RH & Grisham CM ed), pp. 10211023. Brooks/Cole, Boston, MA.
  • 75
    Antos LK, Abbey-Hosch SE, Flora DR & Potter LR (2005) ATP-independent activation of natriuretic peptide receptors. J Biol Chem 280, 2692826932.
  • 76
    Duda T, Venkataraman V, Ravichandran S & Sharma RK (2005) ATP-regulated module (ARM) of the atrial natriuretic factor receptor guanylate cyclase. Peptides 26, 969984.
  • 77
    Wilson EM & Chinkers M (1995) Identification of sequences mediating guanylyl cyclase dimerization. Biochemistry 34, 46964701.
  • 78
    Saha S, Biswas KH, Kondapalli C, Isloor N & Visweswariah SS (2009) The linker region in receptor guanylyl cyclases is a key regulatory module: mutational analysis of guanylyl cyclase C. J Biol Chem 284, 2713527145.
  • 79
    Winger JA, Derbyshire ER, Lamers MH, Marletta MA & Kuriyan J (2008) The crystal structure of the catalytic domain of a eukaryotic guanylate cyclase. BMC Struct Biol 8, 42.
  • 80
    Rauch A, Leipelt M, Russwurm M & Steegborn C (2008) Crystal structure of the guanylyl cyclase Cya2. Proc Natl Acad Sci USA 105, 1572015725.
  • 81
    Tesmer JJ, Sunahara RK, Gilman AG & Sprang SR (1997) Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. Science 278, 19071916.
  • 82
    Zhang G, Liu Y, Ruoho AE & Hurley JH (1997) Structure of the adenylyl cyclase catalytic core. Nature 386, 247253.
  • 83
    Tesmer JJ, Sunahara RK, Johnson RA, Gosselin G, Gilman AG & Sprang SR (1999) Two-metal-ion catalysis in adenylyl cyclase. Science 285, 756760.
  • 84
    Linder JU & Schultz JE (2003) The class III adenylyl cyclases: multi-purpose signalling modules. Cell Signal 15, 10811089.
  • 85
    Winger JA & Marletta MA (2005) Expression and characterization of the catalytic domains of soluble guanylate cyclase: interaction with the heme domain. Biochemistry 44, 40834090.
  • 86
    Hurley JH (1999) Structure, mechanism, and regulation of mammalian adenylyl cyclase. J Biol Chem 274, 75997602.
  • 87
    Liu Y, Ruoho AE, Rao VD & Hurley JH (1997) Catalytic mechanism of the adenylyl and guanylyl cyclases: modeling and mutational analysis. Proc Natl Acad Sci USA 94, 1341413419.
  • 88
    Radany EW, Gerzer R & Garbers DL (1983) Purification and characterization of particulate guanylate cyclase from sea urchin spermatozoa. J Biol Chem 258, 83468351.
  • 89
    Kuno T, Andresen JW, Kamisaki Y, Waldman SA, Chang LY, Saheki S, Leitman DC, Nakane M & Murad F (1986) Co-purification of an atrial natriuretic factor receptor and particulate guanylate cyclase from rat lung. J Biol Chem 261, 58175823.
  • 90
    Paul AK, Marala RB, Jaiswal RK & Sharma RK (1987) Coexistence of guanylate cyclase and atrial natriuretic factor receptor in a 180-kD protein. Science 235, 12241226.
  • 91
    Misono KS, Fukumi H, Grammer RT & Inagami T (1984) Rat atrial natriuretic factor: complete amino acid sequence and disulfide linkage essential for biological activity. Biochem Biophys Res Commun 119, 524529.