SEARCH

SEARCH BY CITATION

References

  • 1
    Kiriakidou M, Tan GS, Lamprinaki S, De Planell-Saguer M, Nelson PT & Mourelatos Z (2007) An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell 129, 11411151.
  • 2
    Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R & Pasquinelli AE (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122, 553563.
  • 3
    Humphreys DT, Westman BJ, Martin DI & Preiss T (2005) MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci USA 102, 1696116966.
  • 4
    Grey F, Tirabassi R, Meyers H, Wu G, McWeeney S, Hook L & Nelson JA (2010) A viral microRNA down-regulates multiple cell cycle genes through mRNA 5′UTRs. PLoS Pathog 6, e1000967.
  • 5
    Jopling CL, Yi M, Lancaster AM, Lemon SM & Sarnow P (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309, 15771581.
  • 6
    Tay Y, Zhang J, Thomson AM, Lim B & Rigoutsos I (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455, 11241128.
  • 7
    Forman JJ, Legesse-Miller A & Coller HA (2008) A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci USA 105, 1487914884.
  • 8
    Wightman B, Ha I & Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855862.
  • 9
    Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH & Cuppen E (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120, 2124.
  • 10
    Lewis BP, Burge CB & Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 1520.
  • 11
    Sato F (2011) Epigenetics and miRNA. FEBS J 278, 15981609.
  • 12
    Olson EN (2006) Gene regulatory networks in the evolution and development of the heart. Science 313, 19221927.
  • 13
    Liu N & Olson EN (2010) MicroRNA regulatory networks in cardiovascular development. Dev Cell 18, 510525.
  • 14
    Jiang X, Tsitsiou E, Herrick SE & Lindsay MA (2010) MicroRNAs and the regulation of fibrosis. FEBS J 277, 20152021.
  • 15
    Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, Qin YW & Jing Q (2010) Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 31, 659666.
  • 16
    Ichimura A (2011) miRNAs and regulation of cell signaling. FEBS J 278, 16101618.
  • 17
    Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV & Hannon GJ (2003) Dicer is essential for mouse development. Nat Genet 35, 215217.
  • 18
    Yang WJ, Yang DD, Na S, Sandusky GE, Zhang Q & Zhao G (2005) Dicer is required for embryonic angiogenesis during mouse development. J Biol Chem 280, 93309335.
  • 19
    Otsuka M, Zheng M, Hayashi M, Lee JD, Yoshino O, Lin S & Han J (2008) Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice. J Clin Invest 118, 19441954.
  • 20
    Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, Hammond SM, Bartel DP & Schier AF (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308, 833838.
  • 21
    da Costa Martins PA, Bourajjaj M, Gladka M, Kortland M, van Oort RJ, Pinto YM, Molkentin JD & De Windt LJ (2008) Conditional Dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation 118, 15671576.
  • 22
    Rao PK, Toyama Y, Chiang HR, Gupta S, Bauer M, Medvid R, Reinhardt F, Liao R, Krieger M, Jaenisch R et al. (2009) Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circ Res 105, 585594.
  • 23
    Zhao Y, Samal E & Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436, 214220.
  • 24
    Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL & Wang DZ (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38, 228233.
  • 25
    Kwon C, Han Z, Olson EN & Srivastava D (2005) MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc Natl Acad Sci USA 102, 1898618991.
  • 26
    Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, Tsuchihashi T, McManus MT, Schwartz RJ & Srivastava D (2007) Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129, 303317.
  • 27
    Niu Z, Li A, Zhang SX & Schwartz RJ (2007) Serum response factor micromanaging cardiogenesis. Curr Opin Cell Biol 19, 618627.
  • 28
    Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R & Olson EN (2008) microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 22, 32423254.
  • 29
    Srivastava D (2006) Making or breaking the heart: from lineage determination to morphogenesis. Cell 126, 10371048.
  • 30
    Stainier DY (2001) Zebrafish genetics and vertebrate heart formation. Nat Rev Genet 2, 3948.
  • 31
    Morton SU, Scherz PJ, Cordes KR, Ivey KN, Stainier DY & Srivastava D (2008) microRNA-138 modulates cardiac patterning during embryonic development. Proc Natl Acad Sci USA 105, 1783017835.
  • 32
    Levy D, Garrison RJ, Savage DD, Kannel WB & Castelli WP (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322, 15611566.
  • 33
    Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND et al. (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13, 613618.
  • 34
    McCarthy JJ & Esser KA (2007) MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol 102, 306313.
  • 35
    Rajabi M, Kassiotis C, Razeghi P & Taegtmeyer H (2007) Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail Rev 12, 331343.
  • 36
    van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA & Olson EN (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA 103, 1825518260.
  • 37
    Chen JF, Murchison EP, Tang R, Callis TE, Tatsuguchi M, Deng Z, Rojas M, Hammond SM, Schneider MD, Selzman CH et al. (2008) Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci USA 105, 21112116.
  • 38
    Cheng Y, Ji R, Yue J, Yang J, Liu X, Chen H, Dean DB & Zhang C (2007) MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? Am J Pathol 170, 18311840.
  • 39
    Sayed D, Hong C, Chen IY, Lypowy J & Abdellatif M (2007) MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 100, 416424.
  • 40
    Ikeda S, Kong SW, Lu J, Bisping E, Zhang H, Allen PD, Golub TR, Pieske B & Pu WT (2007) Altered microRNA expression in human heart disease. Physiol Genomics 31, 367373.
  • 41
    Tatsuguchi M, Seok HY, Callis TE, Thomson JM, Chen JF, Newman M, Rojas M, Hammond SM & Wang DZ (2007) Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol 42, 11371141.
  • 42
    Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, van Laake LW, Doevendans PA, Mummery CL, Borlak J, Haverich A et al. (2007) MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116, 258267.
  • 43
    Latronico MV, Catalucci D & Condorelli G (2007) Emerging role of microRNAs in cardiovascular biology. Circ Res 101, 12251236.
  • 44
    Sayed D, Rane S, Lypowy J, He M, Chen IY, Vashistha H, Yan L, Malhotra A, Vatner D & Abdellatif M (2008) MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. Mol Biol Cell 19, 32723282.
  • 45
    Olson EN & Schneider MD (2003) Sizing up the heart: development redux in disease. Genes Dev 17, 19371956.
  • 46
    Liu N, Williams AH, Kim Y, McAnally J, Bezprozvannaya S, Sutherland LB, Richardson JA, Bassel-Duby R & Olson EN (2007) An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc Natl Acad Sci USA 104, 2084420849.
  • 47
    Wilkins BJ & Molkentin JD (2004) Calcium-calcineurin signaling in the regulation of cardiac hypertrophy. Biochem Biophys Res Commun 322, 11781191.
  • 48
    Lin Z, Murtaza I, Wang K, Jiao J, Gao J & Li PF (2009) miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc Natl Acad Sci USA 106, 1210312108.
  • 49
    Ikeda S, He A, Kong SW, Lu J, Bejar R, Bodyak N, Lee KH, Ma Q, Kang PM, Golub TR et al. (2009) MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol Cell Biol 29, 21932204.
  • 50
    van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J & Olson EN (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575579.
  • 51
    Callis TE, Pandya K, Seok HY, Tang RH, Tatsuguchi M, Huang ZP, Chen JF, Deng Z, Gunn B, Shumate J et al. (2009) MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest 119, 27722786.
  • 52
    Nishi H, Ono K, Horie T, Nagao K, Kinoshita M, Kuwabara Y, Watanabe S, Takaya T, Tamaki Y, Takanabe-Mori R et al. (2011) MicroRNA-27a regulates beta cardiac myosin heavy chain gene expression by targeting thyroid hormone receptor {beta}1 in neonatal rat ventricular myocytes. Mol Cell Biol 31, 744755.
  • 53
    Ono K, Matsumori A, Shioi T, Furukawa Y & Sasayama S (1998) Cytokine gene expression after myocardial infarction in rat hearts: possible implication in left ventricular remodeling. Circulation 98, 149156.
  • 54
    Ren XP, Wu J, Wang X, Sartor MA, Qian J, Jones K, Nicolaou P, Pritchard TJ & Fan GC (2009) MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation 119, 23572366.
  • 55
    Dong S, Cheng Y, Yang J, Li J, Liu X, Wang X, Wang D, Krall TJ, Delphin ES & Zhang C (2009) MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J Biol Chem 284, 2951429525.
  • 56
    Xu C, Lu Y, Pan Z, Chu W, Luo X, Lin H, Xiao J, Shan H, Wang Z & Yang B (2007) The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci 120, 30453052.
  • 57
    Shan ZX, Lin QX, Fu YH, Deng CY, Zhou ZL, Zhu JN, Liu XY, Zhang YY, Li Y, Lin SG et al. (2009) Upregulated expression of miR-1/miR-206 in a rat model of myocardial infarction. Biochem Biophys Res Commun 381, 597601.
  • 58
    Rowland RT, Meng X, Cleveland JC, Meldrum DR, Harken AH & Brown JM (1997) Cardioadaptation induced by cyclic ischemic preconditioning is mediated by translational regulation of de novo protein synthesis. J Surg Res 71, 155160.
  • 59
    Murry CE, Jennings RB & Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74, 11241136.
  • 60
    Rane S, He M, Sayed D, Vashistha H, Malhotra A, Sadoshima J, Vatner DE, Vatner SF & Abdellatif M (2009) Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res 104, 879886.
  • 61
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ & Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9, 654659.
  • 62
    Hunter MP, Ismail N, Zhang X, Aguda BD, Lee EJ, Yu L, Xiao T, Schafer J, Lee ML, Schmittgen TD et al. (2008) Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE 3, e3694.
  • 63
    Rabinowits G, Gercel-Taylor C, Day JM, Taylor DD & Kloecker GH (2009) Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 10, 4246.
  • 64
    Camussi G, Deregibus MC, Bruno S, Cantaluppi V & Biancone L (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78, 838848.
  • 65
    Ji X, Takahashi R, Hiura Y, Hirokawa G, Fukushima Y & Iwai N (2009) Plasma miR-208 as a biomarker of myocardial injury. Clin Chem 55, 19441949.
  • 66
    D’Alessandra Y, Devanna P, Limana F, Straino S, Di Carlo A, Brambilla PG, Rubino M, Carena MC, Spazzafumo L, De Simone M et al. (2010) Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J 31, 27652773.
  • 67
    Cheng Y, Tan N, Yang J, Liu X, Cao X, He P, Dong X, Qin S & Zhang C (2010) A translational study of circulating cell-free microRNA-1 in acute myocardial infarction. Clin Sci (Lond) 119, 8795.
  • 68
    Ai J, Zhang R, Li Y, Pu J, Lu Y, Jiao J, Li K, Yu B, Li Z, Wang R et al. (2010) Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun 391, 7377.
  • 69
    Rossi MA (1998) Pathologic fibrosis and connective tissue matrix in left ventricular hypertrophy due to chronic arterial hypertension in humans. J Hypertens 16, 10311041.
  • 70
    Swynghedauw B (1999) Molecular mechanisms of myocardial remodeling. Physiol Rev 79, 215262.
  • 71
    Manabe I, Shindo T & Nagai R (2002) Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circ Res 91, 11031113.
  • 72
    Brown RD, Ambler SK, Mitchell MD & Long CS (2005) The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu Rev Pharmacol Toxicol 45, 657687.
  • 73
    Khan R & Sheppard R (2006) Fibrosis in heart disease: understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology 118, 1024.
  • 74
    Martos R, Baugh J, Ledwidge M, O’Loughlin C, Conlon C, Patle A, Donnelly SC & McDonald K (2007) Diastolic heart failure: evidence of increased myocardial collagen turnover linked to diastolic dysfunction. Circulation 115, 888895.
  • 75
    van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, Hill JA & Olson EN (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA 105, 1302713032.
  • 76
    Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S et al. (2008) MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456, 980984.
  • 77
    Roy S, Khanna S, Hussain SR, Biswas S, Azad A, Rink C, Gnyawali S, Shilo S, Nuovo GJ & Sen CK (2009) MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res 82, 2129.
  • 78
    Park MJ, Kim MS, Park IC, Kang HS, Yoo H, Park SH, Rhee CH, Hong SI & Lee SH (2002) PTEN suppresses hyaluronic acid-induced matrix metalloproteinase-9 expression in U87MG glioblastoma cells through focal adhesion kinase dephosphorylation. Cancer Res 62, 63186322.
  • 79
    Zheng H, Takahashi H, Murai Y, Cui Z, Nomoto K, Niwa H, Tsuneyama K & Takano Y (2006) Expressions of MMP-2, MMP-9 and VEGF are closely linked to growth, invasion, metastasis and angiogenesis of gastric carcinoma. Anticancer Res 26, 35793583.
  • 80
    Duisters RF, Tijsen AJ, Schroen B, Leenders JJ, Lentink V, van der Made I, Herias V, van Leeuwen RE, Schellings MW, Barenbrug P et al. (2009) miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res 104, 170178.
  • 81
    Marban E (2002) Cardiac channelopathies. Nature 415, 213218.
  • 82
    Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H et al. (2007) The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13, 486491.
  • 83
    Jongsma HJ (2000) Diversity of gap junctional proteins: does it play a role in cardiac excitation? J Cardiovasc Electrophysiol 11, 228230.
  • 84
    Saffitz JE, Laing JG & Yamada KA (2000) Connexin expression and turnover: implications for cardiac excitability. Circ Res 86, 723728.
  • 85
    Lerner DL, Yamada KA, Schuessler RB & Saffitz JE (2000) Accelerated onset and increased incidence of ventricular arrhythmias induced by ischemia in Cx43-deficient mice. Circulation 101, 547552.
  • 86
    Diaz RJ, Zobel C, Cho HC, Batthish M, Hinek A, Backx PH & Wilson GJ (2004) Selective inhibition of inward rectifier K+ channels (Kir2.1 or Kir2.2) abolishes protection by ischemic preconditioning in rabbit ventricular cardiomyocytes. Circ Res 95, 325332.
  • 87
    Wang Z, Yue L, White M, Pelletier G & Nattel S (1998) Differential distribution of inward rectifier potassium channel transcripts in human atrium versus ventricle. Circulation 98, 24222428.
  • 88
    Xiao J, Luo X, Lin H, Zhang Y, Lu Y, Wang N, Yang B & Wang Z (2007) MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J Biol Chem 282, 1236312367.
  • 89
    Luo X, Xiao J, Lin H, Li B, Lu Y, Yang B & Wang Z (2007) Transcriptional activation by stimulating protein 1 and post-transcriptional repression by muscle-specific microRNAs of IKs-encoding genes and potential implications in regional heterogeneity of their expressions. J Cell Physiol 212, 358367.
  • 90
    Terentyev D, Belevych AE, Terentyeva R, Martin MM, Malana GE, Kuhn DE, Abdellatif M, Feldman DS, Elton TS & Gyorke S (2009) miR-1 overexpression enhances Ca(2+) release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56alpha and causing CaMKII-dependent hyperphosphorylation of RyR2. Circ Res 104, 514521.
  • 91
    Kuehbacher A, Urbich C, Zeiher AM & Dimmeler S (2007) Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res 101, 5968.
  • 92
    Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E, Furth EE, Lee WM, Enders GH, Mendell JT et al. (2006) Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38, 10601065.
  • 93
    Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R & Olson EN (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15, 261271.
  • 94
    Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, Ivey KN, Bruneau BG, Stainier DY & Srivastava D (2008) miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15, 272284.
  • 95
    Chen Y & Gorski DH (2008) Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5. Blood 111, 12171226.
  • 96
    Fasanaro P, D’Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G, Capogrossi MC & Martelli F (2008) MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem 283, 1587815883.
  • 97
    Lee DY, Deng Z, Wang CH & Yang BB (2007) MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci USA 104, 2035020355.
  • 98
    Hua Z, Lv Q, Ye W, Wong CK, Cai G, Gu D, Ji Y, Zhao C, Wang J, Yang BB et al. (2006) MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS ONE 1, e116.
  • 99
    Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M et al. (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102, 1394413949.
  • 100
    Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K et al. (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324, 17101713.
  • 101
    Suarez Y, Fernandez-Hernando C, Pober JS & Sessa WC (2007) Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res 100, 11641173.
  • 102
    Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, Mercatanti A, Hammond S & Rainaldi G (2006) MicroRNAs modulate the angiogenic properties of HUVECs. Blood 108, 30683071.
  • 103
    Ross R (1999) Atherosclerosis – an inflammatory disease. N Engl J Med 340, 115126.
  • 104
    Silvestre JS, Mallat Z, Tedgui A & Levy BI (2008) Post-ischaemic neovascularization and inflammation. Cardiovasc Res 78, 242249.
  • 105
    Harris TA, Yamakuchi M, Ferlito M, Mendell JT & Lowenstein CJ (2008) MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA 105, 15161521.
  • 106
    Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, Dean DB & Zhang C (2007) MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res 100, 15791588.
  • 107
    Liu X, Cheng Y, Zhang S, Lin Y, Yang J & Zhang C (2009) A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res 104, 476487.
  • 108
    Martin MM, Buckenberger JA, Jiang J, Malana GE, Nuovo GJ, Chotani M, Feldman DS, Schmittgen TD & Elton TS (2007) The human angiotensin II type 1 receptor +1166 A/C polymorphism attenuates microrna-155 binding. J Biol Chem 282, 2426224269.
  • 109
    Bonnardeaux A, Davies E, Jeunemaitre X, Fery I, Charru A, Clauser E, Tiret L, Cambien F, Corvol P & Soubrier F (1994) Angiotensin II type 1 receptor gene polymorphisms in human essential hypertension. Hypertension 24, 6369.
  • 110
    Benetos A, Gautier S, Ricard S, Topouchian J, Asmar R, Poirier O, Larosa E, Guize L, Safar M, Soubrier F et al. (1996) Influence of angiotensin-converting enzyme and angiotensin II type 1 receptor gene polymorphisms on aortic stiffness in normotensive and hypertensive patients. Circulation 94, 698703.
  • 111
    Tiret L, Bonnardeaux A, Poirier O, Ricard S, Marques-Vidal P, Evans A, Arveiler D, Luc G, Kee F, Ducimetiere P et al. (1994) Synergistic effects of angiotensin-converting enzyme and angiotensin-II type 1 receptor gene polymorphisms on risk of myocardial infarction. Lancet 344, 910913.
  • 112
    Horie T, Ono K, Nishi H, Iwanaga Y, Nagao K, Kinoshita M, Kuwabara Y, Takanabe R, Hasegawa K, Kita T et al. (2009) MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes. Biochem Biophys Res Commun 389, 315320.
  • 113
    Nishi H, Ono K, Iwanaga Y, Horie T, Nagao K, Takemura G, Kinoshita M, Kuwabara Y, Mori RT, Hasegawa K et al. (2010) MicroRNA-15b modulates cellular ATP levels and degenerates mitochondria via Arl2 in neonatal rat cardiac myocytes. J Biol Chem 285, 49204930.
  • 114
    Horie T, Ono K, Nishi H, Nagao K, Kinoshita M, Watanabe S, Kuwabara Y, Nakashima Y, Takanabe-Mori R, Nishi E et al. (2010) Acute doxorubicin cardiotoxicity is associated with miR-146a-induced inhibition of the neuregulin-ErbB pathway. Cardiovasc Res 87, 656664.
  • 115
    Marquart TJ, Allen RM, Ory DS & Baldan A (2010) miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci USA 107, 1222812232.
  • 116
    Rayner KJ, Suarez Y, Davalos A, Parathath S, Fitzgerald ML, Tamehiro N, Fisher EA, Moore KJ & Fernandez-Hernando C (2010) MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328, 15701573.
  • 117
    Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE & Naar AM (2010) MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328, 15661569.
  • 118
    Horie T, Ono K, Horiguchi M, Nishi H, Nakamura T, Nagao K, Kinoshita M, Kuwabara Y, Marusawa H, Iwanaga Y et al. (2010) MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc Natl Acad Sci USA 107, 1732117326.
  • 119
    Kim JB, Sarraf P, Wright M, Yao KM, Mueller E, Solanes G, Lowell BB & Spiegelman BM (1998) Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. J Clin Invest 101, 19.
  • 120
    Chen G, Liang G, Ou J, Goldstein JL & Brown MS (2004) Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver. Proc Natl Acad Sci USA 101, 1124511250.