SEARCH

SEARCH BY CITATION

References

  • 1
    Hazelwood LA, Daran JM, van Maris AJ, Pronk JT & Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74, 22592266.
  • 2
    Dickinson JR, Salgado LE & Hewlins MJ (2003) The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. J Biol Chem 278, 80288034.
  • 3
    Vuralhan Z, Morais MA, Tai SL, Piper MD & Pronk JT (2003) Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae. Appl Environ Microbiol 69, 45344541.
  • 4
    Vuralhan Z, Luttik MA, Tai SL, Boer VM, Morais MA, Schipper D, Almering MJ, Kotter P, Dickinson JR, Daran JM et al. (2005) Physiological characterization of the ARO10-dependent, broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae. Appl Environ Microbiol 71, 32763284.
  • 5
    Atsumi S, Hanai T & Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451, 8689.
  • 6
    Zhang K, Sawaya MR, Eisenberg DS & Liao JC (2008) Expanding metabolism for biosynthesis of nonnatural alcohols. Proc Natl Acad Sci USA 105, 2065320658.
  • 7
    Dickinson JR, Lanterman MM, Danner DJ, Pearson BM, Sanz P, Harrison SJ & Hewlins MJ (1997) A 13C nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae. J Biol Chem 272, 2687126878.
  • 8
    ter Schure EG, Flikweert MT, van Dijken JP, Pronk JT & Verrips CT (1998) Pyruvate decarboxylase catalyzes decarboxylation of branched-chain 2-oxo acids but is not essential for fusel alcohol production by Saccharomyces cerevisiae. Appl Environ Microbiol 64, 13031307.
  • 9
    Perpete P, Duthoit O, De Maeyer S, Imray L, Lawton AI, Stavropoulos KE, Gitonga VW, Hewlins MJ & Dickinson JR (2006) Methionine catabolism in Saccharomyces cerevisiae. FEMS Yeast Res 6, 4856.
  • 10
    Kellermann E, Seeboth PG & Hollenberg CP (1986) Analysis of the primary structure and promoter function of a pyruvate decarboxylase gene (PDC1) from Saccharomyces cerevisiae. Nucleic Acids Res 14, 89638977.
  • 11
    Seeboth PG, Bohnsack K & Hollenberg CP (1990) pdc1(0) mutants of Saccharomyces cerevisiae give evidence for an additional structural PDC gene: cloning of PDC5, a gene homologous to PDC1. J Bacteriol 172, 678685.
  • 12
    Hohmann S (1991) Characterization of PDC6, a third structural gene for pyruvate decarboxylase in Saccharomyces cerevisiae. J Bacteriol 173, 79637969.
  • 13
    Iraqui I, Vissers S, Andre B & Urrestarazu A (1999) Transcriptional induction by aromatic amino acids in Saccharomyces cerevisiae. Mol Cell Biol 19, 33603371.
  • 14
    Godard P, Urrestarazu A, Vissers S, Kontos K, Bontempi G, van Helden J & Andre B (2007) Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol 27, 30653086.
  • 15
    Siegert P, McLeish MJ, Baumann M, Iding H, Kneen MM, Kenyon GL & Pohl M (2005) Exchanging the substrate specificities of pyruvate decarboxylase from Zymomonas mobilis and benzoylformate decarboxylase from Pseudomonas putida. Protein Eng Des Sel 18, 345357.
  • 16
    Yep A & McLeish MJ (2009) Evolution of a benzoylformate decarboxylase variant with enhanced pyruvate decarboxylase activity. Biochemistry 48, 83878395.
  • 17
    Hasson MS, Muscate A, McLeish MJ, Polovnikova LS, Gerlt JA, Kenyon GL, Petsko GA & Ringe D (1998) The crystal structure of benzoylformate decarboxylase at 1.6 Å resolution: diversity of catalytic residues in thiamin diphosphate-dependent enzymes. Biochemistry 37, 99189930.
  • 18
    Ward OP & Singh A (2005) Enzyme biotransformation involving α-ketoacid decarboxylases. In Microorganisms for Industrial Enzymes and Biocontrol (Mellado E & Barredo J-L eds), pp. 8394. Research Signpost, Trivandrum, India.
  • 19
    Spaepen S, Versees W, Gocke D, Pohl M, Steyaert J & Vanderleyden J (2007) Characterization of phenylpyruvate decarboxylase, involved in auxin production of Azospirillum brasilense. J Bacteriol 189, 76267633.
  • 20
    Asakawa T, Wada H & Yamano T (1968) Enzymatic conversion of phenylpyruvate to phenylacetate. Biochim Biophys Acta 170, 375391.
  • 21
    Barrowman MM & Fewson CA (1985) Phenylglyoxylate decarboxylase and phenylpyruvate decarboxylase from Acinetobacter calcoaceticus. Curr Microbiol 12, 235240.
  • 22
    Guo ZZ (1999) Asymmetric acyloin condensation catalyzed by phenylpyruvate decarboxylase. Tetrahedron Asymmetry 10, 4667.
  • 23
    de Boer L, Harder W & Dijkhuizen L (1988) Phenylalanine and tyrosine metabolism in the facultative methyltroph Nocardia sp. 239. Arch Microbiol 149, 459465.
  • 24
    Schneider S, Mohamed ME & Fuchs G (1997) Anaerobic metabolism of L-phenylalanine via benzoyl-CoA in the denitrifying bacterium Thauera aromatica. Arch Microbiol 168, 310320.
  • 25
    Kishore G, Sugumaran M & Vaidyanathan CS (1976) Metabolism of DL-(+/–)-phenylalanine by Aspergillus niger. J Bacteriol 128, 182191.
  • 26
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W & Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 33893402.
  • 27
    Ben-Bassat A, Bauer K, Chang SY, Myambo K, Boosman A & Chang S (1987) Processing of the initiation methionine from proteins: properties of the Escherichia coli methionine aminopeptidase and its gene structure. J Bacteriol 169, 751757.
  • 28
    Liao YD, Jeng JC, Wang CF, Wang SC & Chang ST (2004) Removal of N-terminal methionine from recombinant proteins by engineered E. coli methionine aminopeptidase. Protein Sci 13, 18021810.
  • 29
    Duggleby RG (2006) Domain relationships in thiamine diphosphate-dependent enzymes. Acc Chem Res 39, 550557.
  • 30
    Berthold CL, Gocke D, Wood MD, Leeper FJ, Pohl M & Schneider G (2007) Structure of the branched-chain keto acid decarboxylase (KdcA) from Lactococcus lactis provides insights into the structural basis for the chemoselective and enantioselective carboligation reaction. Acta Crystallogr D Biol Crystallogr 63, 12171224.
  • 31
    Gocke D, Nguyen CL, Pohl M, Stillger T, Walter L & Muller M (2007) Branched-chain keto acid decarboxylase from Lactococcus lactis (KdcA), a valuable thiamine diphosphate-dependent enzyme for assymmetric C-C bond formation. Adv Synth Catal 349, 14251435.
  • 32
    Nemeria N, Korotchkina L, McLeish MJ, Kenyon GL, Patel MS & Jordan F (2007) Elucidation of the chemistry of enzyme-bound thiamin diphosphate prior to substrate binding: defining internal equilibria among tautomeric and ionization states. Biochemistry 46, 1073910744.
  • 33
    Arjunan P, Umland T, Dyda F, Swaminathan S, Furey W, Sax M, Farrenkopf B, Gao Y, Zhang D & Jordan F (1996) Crystal structure of the thiamin diphosphate-dependent enzyme pyruvate decarboxylase from the yeast Saccharomyces cerevisiae at 2.3 Å resolution. J Mol Biol 256, 590600.
  • 34
    Dobritzsch D, Konig S, Schneider G & Lu G (1998) High resolution crystal structure of pyruvate decarboxylase from Zymomonas mobilis. Implications for substrate activation in pyruvate decarboxylases. J Biol Chem 273, 2019620204.
  • 35
    Kutter S, Wille G, Relle S, Weiss MS, Hubner G & Konig S (2006) The crystal structure of pyruvate decarboxylase from Kluyveromyces lactis. Implications for the substrate activation mechanism of this enzyme. FEBS J 273, 41994209.
  • 36
    Schutz A, Sandalova T, Ricagno S, Hubner G, Konig S & Schneider G (2003) Crystal structure of thiamindiphosphate-dependent indolepyruvate decarboxylase from Enterobacter cloacae, an enzyme involved in the biosynthesis of the plant hormone indole-3-acetic acid. Eur J Biochem 270, 23122321.
  • 37
    Versées W, Spaepen S, Vanderleyden J & Steyaert J (2007) The crystal structure of phenylpyruvate decarboxylase from Azospirillum brasilense at 1.5 A resolution. Implications for its catalytic and regulatory mechanism. FEBS J 274, 23632375.
  • 38
    Yep A, Kenyon GL & McLeish MJ (2006) Determinants of substrate specificity in KdcA, a thiamin diphosphate-dependent decarboxylase. Bioorg Chem 34, 325336.
  • 39
    Steinmetz A, Vyazmensky M, Meyer D, Barak ZE, Golbik R, Chipman DM & Tittmann K (2010) Valine 375 and phenylalanine 109 confer affinity and specificity for pyruvate as donor substrate in acetohydroxy acid synthase isozyme II from Escherichia coli. Biochemistry 49, 51885199.
  • 40
    Koga J, Adachi T & Hidaka H (1992) Purification and characterization of indolepyruvate decarboxylase. A novel enzyme for indole-3-acetic acid biosynthesis in Enterobacter cloacae. J Biol Chem 267, 1582315828.
  • 41
    Costacurta A, Keijers V & Vanderleyden J (1994) Molecular cloning and sequence analysis of an Azospirillum brasilense indole-3-pyruvate decarboxylase gene. Mol Gen Genet 243, 463472.
  • 42
    Schutz A, Golbik R, Tittmann K, Svergun DI, Koch MH, Hubner G & Konig S (2003) Studies on structure-function relationships of indolepyruvate decarboxylase from Enterobacter cloacae, a key enzyme of the indole acetic acid pathway. Eur J Biochem 270, 23222331.
  • 43
    Schutz A, Golbik R, Konig S, Hubner G & Tittmann K (2005) Intermediates and transition states in thiamin diphosphate-dependent decarboxylases. A kinetic and NMR study on wild-type indolepyruvate decarboxylase and variants using indolepyruvate, benzoylformate, and pyruvate as substrates. Biochemistry 44, 61646179.
  • 44
    Lobell M & Crout DHG (1996) Pyruvate decarboxylase: a molecular modeling study of pyruvate decarboxylation and acyloin formation. J Am Chem Soc 118, 18671873.
  • 45
    Chang AK, Nixon PF & Duggleby RG (1999) Aspartate-27 and glutamate-473 are involved in catalysis by Zymomonas mobilis pyruvate decarboxylase. Biochem J 339, 255260.
  • 46
    Liu M, Sergienko EA, Guo F, Wang J, Tittmann K, Hubner G, Furey W & Jordan F (2001) Catalytic acid-base groups in yeast pyruvate decarboxylase. 1. Site-directed mutagenesis and steady-state kinetic studies on the enzyme with the D28A, H114F, H115F, and E477Q substitutions. Biochemistry 40, 73557368.
  • 47
    Meyer D, Neumann P, Parthier C, Friedemann R, Nemeria N, Jordan F & Tittmann K (2010) Double duty for a conserved glutamate in pyruvate decarboxylase: evidence of the participation in stereoelectronically controlled decarboxylation and in protonation of the nascent carbanion/enamine intermediate. Biochemistry 49, 81978212.
  • 48
    Versées W, Spaepen S, Wood MD, Leeper FJ, Vanderleyden J & Steyaert J (2007) Molecular mechanism of allosteric substrate activation in a thiamine diphosphate-dependent decarboxylase. J Biol Chem 282, 3526935278.