SEARCH

SEARCH BY CITATION

References

  • 1
    Schäfer T, Borchert TW, Nielsen VS, Skagerlind P, Gibson K, Wenger K, Hatzack F, Nilsson LD, Salmon S, Pedersen S et al. (2007) Industrial enzymes. Adv Biochem Eng Biotechnol 105, 59131.
  • 2
    Shinde UP & Inouye M (1996) Propeptide-mediated folding in subtilisin: the intramolecular chaperone concept. Adv Exp Med Biol 379, 147154.
  • 3
    Shinde UP & Inouye M (2000) Intramolecular chaperones: polypeptide extensions that modulate protein folding. Semin Cell Dev Biol 11, 3544.
  • 4
    Subbian E, Yabuta Y & Shinde UP (2005) Folding pathway mediated by an intramolecular chaperone: intrinsically unstructured propeptide modulates stochastic activation of subtilisin. J Mol Biol 347, 367383.
  • 5
    Falzon L, Patel S, Chen YJ & Inouye M (2007) Autotomic behavior of the propeptide in propeptide-mediated folding of prosubtilisin E. J Mol Biol 366, 494503.
  • 6
    Zhu XL, Ohta Y, Jordan F & Inouye M (1989) Pro-sequence of subtilisin can guide the refolding of denatured subtilisin in an intermolecular process. Nature 339, 483484.
  • 7
    Eder J & Fersht AR (1995) Pro-sequences assisted protein folding. Mol Microbiol 16, 609614.
  • 8
    Li Y, Hu Z, Jordan F & Inouye M (1995) Functional analysis of the propeptide of subtilisin E as an intramolecular chaperone for protein folding. Refolding and inhibitory abilities of propeptide mutants. J Biol Chem 270, 2512725132.
  • 9
    Yabuta Y, Takagi H, Inouye M & Shinde UP (2001) Folding pathway mediated by an intramolecular chaperone: propeptide release modulates activation precision of pro-subtilisin. J Biol Chem 276, 4442744434.
  • 10
    Atomi H, Fukui T, Kanai T, Morikawa M & Imanaka T (2004) Description of Thermococcus kodakaraensis sp. nov., a well studied hyperthermophilic archaeon previously reported as Pyrococcus sp. KOD1. Archaea 1, 263267.
  • 11
    Fukui T, Atomi H, Kanai T, Matsumi R, Fujiwara S & Imanaka T (2005) Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res 15, 352363.
  • 12
    Foophow T, Tanaka S, Koga Y, Takano K & Kanaya S (2010) Subtilisin-like serine protease from hyperthermophilic archaeon Thermococcus kodakaraensis with N- and C-terminal propeptides. Protein Eng Des Sel 23, 347355.
  • 13
    Foophow T, Tanaka S, Angkawidjaja C, Koga Y, Takano K & Kanaya S (2010) Crystal structure of a subtilisin homologue, Tk-SP, from Thermococcus kodakaraensis: requirement of a C-terminal β-jelly roll domain for hyperstability. J Mol Biol 400, 865877.
  • 14
    Tanaka S, Saito K, Chon H, Matsumura H, Koga Y, Takano K & Kanaya S (2007) Crystal structure of unautoprocessed precursor of subtilisin from a hyperthermophilic archaeon: evidence for Ca2+-induced folding. J Biol Chem 282, 82468255.
  • 15
    Pulido M, Saito K, Tanaka S, Koga Y, Morikawa M, Takano K & Kanaya S (2006) Ca2+-dependent maturation of Tk-subtilisin from a hyperthermophilic archaeon: propeptide is a potent inhibitor of the mature domain but is not required for its folding. Appl Environ Microbiol 72, 41544162.
  • 16
    Pulido M, Tanaka S, Sringiew C, You D-J, Matsumura H, Koga Y, Takano K & Kanaya S (2007) Requirement of left-handed glycine residue for high stability of the Tk-subtilisin propeptide as revealed by mutational and crystallographic analyses. J Mol Biol 374, 13591373.
  • 17
    Tanaka S, Takeuchi Y, Matsumura H, Koga Y, Takano K & Kanaya S (2008) Crystal structure of Tk-subtilisin folded without propeptide: requirement of propeptide for acceleration of folding. FEBS Lett 582, 38753878.
  • 18
    Tanaka S, Matsumura H, Koga Y, Takano K & Kanaya S (2009) Identification of the interactions critical for propeptide-catalyzed folding of Tk-subtilisin. J Mol Biol 394, 306319.
  • 19
    Tanaka S, Matsumura H, Koga Y, Takano K & Kanaya S (2007) Four new crystal structures of Tk-subtilisin in unautoprocessed, autoprocessed and mature forms: insight into structural changes during maturation. J Mol Biol 372, 10551069.
  • 20
    Takeuchi Y, Tanaka S, Matsumura H, Koga Y, Takano K & Kanaya S (2009) Requirement of a unique Ca2+-binding loop for folding of Tk-subtilisin from a hyperthermophilic archaeon. Biochemistry 48, 1063710643.
  • 21
    Gallagher T, Gilliland G, Wang L & Bryan P (1995) The prosegment-subtilisin BPN’ complex: crystal structure of a specific ‘foldase’. Structure 3, 907914.
  • 22
    Jain SC, Shinde UP, Li Y, Inouye M & Berman HM (1998) The crystal structure of an autoprocessed Ser221Cys-subtilisin E-propeptide complex at 2.0 Å resolution. J Mol Biol 284, 137144.
  • 23
    Li Y & Inouye M (1994) Autoprocessing of prothiolsubtilisin E in which active-site serine 221 is altered to cysteine. J Biol Chem 269, 41694174.
  • 24
    Greenfield N & Fasman GD (1969) Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8, 41084116.
  • 25
    Morikawa M, Izawa Y, Rashid N, Hoaki T & Imanaka T (1994) Purification and characterization of a thermostable thiol protease from a newly isolated hyperthermophilic Pyrococcus sp. Appl Environ Microbiol 60, 45594566.
  • 26
    Jones HE, Holland IB & Campbell AK (2002) Direct measurement of free Ca2+ shows different regulation of Ca2+ between the periplasm and the cytosol of Escherichia coli. Cell Calcium 32, 183192.
  • 27
    Goodwin TW & Morton RA (1946) The spectrophotometric determination of tyrosine and tryptophan in proteins. Biochem J 40, 628632.
  • 28
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.