• 1
    Zijlstra M, Bix M, Simister NE, Loring JM, Raulet DH & Jaenisch R (1990) Beta2-microglobulin deficient mice lack CD4-8+ cytolytic T cells. Nature 344, 742746.
  • 2
    Hughes EA, Hammond C & Cresswell P (1997) Misfolded major histocompatibility complex class I heavy chains are translocated into the cytoplasm and degraded by the proteasome. Proc Natl Acad Sci USA 94, 18961901.
  • 3
    Paulsson KM, Wang P, Anderson PO, Chen S, Pettersson RF & Li S (2001) Distinct differences in association of MHC class I with endoplasmic reticulum proteins in wild-type, and beta2-microglobulin- and TAP-deficient cell lines. Int Immunol 13, 10631073.
  • 4
    Becker JW & Reeke GN Jr (1985) Three-dimensional structure of beta2-microglobulin. Proc Natl Acad Sci USA 82, 42254229.
  • 5
    Smith DP & Radford SE (2001) Role of the single disulphide bond of beta2-microglobulin in amyloidosis in vitro. Protein Sci 10, 17751784.
  • 6
    Katou H, Kanno T, Hoshino M, Hagihara Y, Tanaka H, Kawai T, Hasegawa K, Naiki H & Goto Y (2002) The role of disulfide bond in the amyloidogenic state of beta2-microglobulin studied by heteronuclear NMR. Protein Sci 11, 22182229.
  • 7
    Verdone G, Corazza A, Viglino P, Pettirossi F, Giorgetti S, Mangione P, Andreola A, Stoppini M, Bellotti V & Esposito G (2002) The solution structure of human beta2-microglobulin reveals the prodromes of its amyloid transition. Protein Sci 11, 487499.
  • 8
    Corazza A, Pettirossi F, Viglino P, Verdone G, Garcia J, Dumy P, Giorgetti S, Mangione P, Raimondi S, Stoppini M et al. (2004) Properties of some variants of human beta2-microglobulin and amyloidogenesis. J Biol Chem 279, 91769189.
  • 9
    Eichner T, Kalverda AP, Thompson GS, Homans SW & Radford SE (2011) Conformational conversion during amyloid formation at atomic resolution. Mol Cell 41, 161172.
  • 10
    Esposito G, Corazza A, Viglino P, Verdone G, Pettirossi F, Fogolari F, Makek A, Giorgetti S, Mangione P, Stoppini M et al. (2005) Solution structure of beta2-microglobulin and insights into fibrillogenesis. Biochim Biophys Acta 1753, 7684.
  • 11
    Trinh CH, Smith DP, Kalverda AP, Phillips SE & Radford SE (2002) Crystal structure of monomeric human beta2-microglobulin reveals clues to its amyloidogenic properties. Proc Natl Acad Sci USA 99, 97719776.
  • 12
    Iwata K, Matsuura T, Sakurai K, Nakagawa A & Goto Y (2007) High-resolution crystal structure of beta2-microglobulin formed at pH 7.0. J Biochem 142, 413419.
  • 13
    Ricagno S, Raimondi S, Giorgetti S, Bellotti V & Bolognesi M (2009) Human beta2-microglobulin W60V mutant structure: implications for stability and amyloid aggregation. Biochem Biophys Res Commun 380, 543547.
  • 14
    Ricagno S, Colombo M, de Rosa M, Sangiovanni E, Giorgetti S, Raimondi S, Bellotti V & Bolognesi M (2008) DE loop mutations affect beta2-microglobulin stability and amyloid aggregation. Biochem Biophys Res Commun 377, 146150.
  • 15
    Rosano C, Zuccotti S, Mangione P, Giorgetti S, Bellotti V, Pettirossi F, Corazza A, Viglino P, Esposito G & Bolognesi M (2004) Beta2-microglobulin H31Y variant 3D structure highlights the protein natural propensity towards intermolecular aggregation. J Mol Biol 335, 10511064.
  • 16
    Esposito G, Ricagno S, Corazza A, Rennella E, Gumral D, Mimmi MC, Betto E, Pucillo CE, Fogolari F, Viglino P et al. (2008) The controlling roles of Trp60 and Trp95 in beta2-microglobulin function, folding and amyloid aggregation properties. J Mol Biol 378, 887897.
  • 17
    Khan AR, Baker BM, Ghosh P, Biddison WE & Wiley DC (2000) The structure and stability of an HLA-A*0201/octameric tax peptide complex with an empty conserved peptide-N-terminal binding site. J Immunol 164, 63986405.
  • 18
    Hodkinson JP, Jahn TR, Radford SE & Ashcroft AE (2009) HDX-ESI-MS reveals enhanced conformational dynamics of the amyloidogenic protein beta2-microglobulin upon release from the MHC-1. J Am Soc Mass Spectrom 20, 278286.
  • 19
    Rennella E, Corazza A, Fogolari F, Viglino P, Giorgetti S, Stoppini M, Bellotti V & Esposito G (2009) Equilibrium unfolding thermodynamics of beta2-microglobulin analyzed through native-state H/D exchange. Biophys J 96, 169179.
  • 20
    Rennella E, Corazza A, Giorgetti S, Fogolari F, Viglino P, Porcari R, Verga L, Stoppini M, Bellotti V & Esposito G (2010) Folding and fibrillogenesis: clues from beta2-microglobulin. J Mol Biol 401, 286297.
  • 21
    Floege J, Bartsch A, Schulze M, Shaldon S, Koch KM & Smeby LC (1991) Clearance and synthesis rates of beta2-microglobulin in patients undergoing hemodialysis and in normal subjects. J Lab Clin Med 118, 153165.
  • 22
    Floege J & Ketteler M (2001) Beta2-microglobulin-derived amyloidosis: an update. Kidney Int Suppl 78, S164S171.
  • 23
    Otsubo S, Kimata N, Okutsu I, Oshikawa K, Ueda S, Sugimoto H, Mitobe M, Uchida K, Otsubo K, Nitta K et al. (2009) Characteristics of dialysis-related amyloidosis in patients on haemodialysis therapy for more than 30 years. Nephrol Dial Transplant 24, 15931598.
  • 24
    Gejyo F, Odani S, Yamada T, Honma N, Saito H, Suzuki Y, Nakagawa Y, Kobayashi H, Maruyama Y, Hirasawa Y et al. (1986) Beta2-microglobulin: a new form of amyloid protein associated with chronic hemodialysis. Kidney Int 30, 385390.
  • 25
    Eichner T & Radford SE (2009) A generic mechanism of beta2-microglobulin amyloid assembly at neutral pH involving a specific proline switch. J Mol Biol 386, 13121326.
  • 26
    Myers SL, Jones S, Jahn TR, Morten IJ, Tennent GA, Hewitt EW & Radford SE (2006) A systematic study of the effect of physiological factors on beta2-microglobulin amyloid formation at neutral pH. Biochemistry 45, 23112321.
  • 27
    van Ypersele de Strihou C, Jadoul M, Malghem J, Maldague B & Jamart J (1991) Effect of dialysis membrane and patient’s age on signs of dialysis-related amyloidosis. The Working Party on Dialysis Amyloidosis. Kidney Int 39, 10121019.
  • 28
    Davison AM (1995) Beta2-microglobulin and amyloidosis: who is at risk? Nephrol Dial Transplant 10(Suppl. 10), 4851.
  • 29
    Zingraff JJ, Noel LH, Bardin T, Atienza C, Zins B, Drueke TB & Kuntz D (1990) Beta2-microglobulin amyloidosis in chronic renal failure. N Engl J Med 323, 10701071.
  • 30
    Moriniere P, Marie A, el Esper N, Fardellone P, Deramond H, Remond A, Sebert JL & Fournier A (1991) Destructive spondyloarthropathy with beta2-microglobulin amyloid deposits in a uremic patient before chronic hemodialysis. Nephron 59, 654657.
  • 31
    Fuchs D, Norkrans G, Wejstal R, Reibnegger G, Weiss G, Weiland O, Schvarcz R, Fryden A & Wachter H (1992) Changes of serum neopterin, beta2-microglobulin and interferon-gamma in patients with chronic hepatitis C treated with interferon-alpha 2b. Eur J Med 1, 196200.
  • 32
    Esposito G, Michelutti R, Verdone G, Viglino P, Hernandez H, Robinson CV, Amoresano A, Dal Piaz F, Monti M, Pucci P et al. (2000) Removal of the N-terminal hexapeptide from human beta2-microglobulin facilitates protein aggregation and fibril formation. Protein Sci 9, 831845.
  • 33
    Bellotti V, Gallieni M, Giorgetti S & Brancaccio D (2001) Dynamic of beta2-microglobulin fibril formation and reabsorption: the role of proteolysis. Semin Dial 14, 117122.
  • 34
    Heegaard NH, Roepstorff P, Melberg SG & Nissen MH (2002) Cleaved beta2-microglobulin partially attains a conformation that has amyloidogenic features. J Biol Chem 277, 1118411189.
  • 35
    Miyata T, Taneda S, Kawai R, Ueda Y, Horiuchi S, Hara M, Maeda K & Monnier VM (1996) Identification of pentosidine as a native structure for advanced glycation end products in beta2-microglobulin-containing amyloid fibrils in patients with dialysis-related amyloidosis. Proc Natl Acad Sci USA 93, 23532358.
  • 36
    Miyata T, Inagi R, Iida Y, Sato M, Yamada N, Oda O, Maeda K & Seo H (1994) Involvement of beta2-microglobulin modified with advanced glycation end products in the pathogenesis of hemodialysis-associated amyloidosis. Induction of human monocyte chemotaxis and macrophage secretion of tumor necrosis factor-alpha and interleukin-1. J Clin Invest 93, 521528.
  • 37
    Niwa T, Katsuzaki T, Miyazaki S, Momoi T, Akiba T, Miyazaki T, Nokura K, Hayase F, Tatemichi N & Takei Y (1997) Amyloid beta2-microglobulin is modified with imidazolone, a novel advanced glycation end product, in dialysis-related amyloidosis. Kidney Int 51, 187194.
  • 38
    Niwa T (2001) Dialysis-related amyloidosis: pathogenesis focusing on AGE modification. Semin Dial 14, 123126.
  • 39
    Capeillere-Blandin C, Delaveau T & Descamps-Latscha B (1991) Structural modifications of human beta2-microglobulin treated with oxygen-derived radicals. Biochem J 277(Pt 1), 175182.
  • 40
    Odani H, Oyama R, Titani K, Ogawa H & Saito A (1990) Purification and complete amino acid sequence of novel beta2-microglobulin. Biochem Biophys Res Commun 168, 12231229.
  • 41
    Relini A, Canale C, De Stefano S, Rolandi R, Giorgetti S, Stoppini M, Rossi A, Fogolari F, Corazza A, Esposito G et al. (2006) Collagen plays an active role in the aggregation of beta2-microglobulin under physiopathological conditions of dialysis-related amyloidosis. J Biol Chem 281, 1652116529.
  • 42
    Relini A, De Stefano S, Torrassa S, Cavalleri O, Rolandi R, Gliozzi A, Giorgetti S, Raimondi S, Marchese L, Verga L et al. (2008) Heparin strongly enhances the formation of beta2-microglobulin amyloid fibrils in the presence of type I collagen. J Biol Chem 283, 49124920.
  • 43
    Athanasou NA, Puddle B & Sallie B (1995) Highly sulphated glycosaminoglycans in articular cartilage and other tissues containing beta2-microglobulin dialysis amyloid deposits. Nephrol Dial Transplant 10, 16721678.
  • 44
    Yamamoto S, Hasegawa K, Yamaguchi I, Goto Y, Gejyo F & Naiki H (2005) Kinetic analysis of the polymerization and depolymerization of beta2-microglobulin-related amyloid fibrils in vitro. Biochim Biophys Acta 1753, 3443.
  • 45
    Pepys MB (2006) Amyloidosis. Annu Rev Med 57, 223241.
  • 46
    Morgan CJ, Gelfand M, Atreya C & Miranker AD (2001) Kidney dialysis-associated amyloidosis: a molecular role for copper in fiber formation. J Mol Biol 309, 339345.
  • 47
    Eakin CM & Miranker AD (2005) From chance to frequent encounters: origins of beta2-microglobulin fibrillogenesis. Biochim Biophys Acta 1753, 9299.
  • 48
    Ookoshi T, Hasegawa K, Ohhashi Y, Kimura H, Takahashi N, Yoshida H, Miyazaki R, Goto Y & Naiki H (2008) Lysophospholipids induce the nucleation and extension of beta2-microglobulin-related amyloid fibrils at a neutral pH. Nephrol Dial Transplant 23, 32473255.
  • 49
    Pal-Gabor H, Gombos L, Micsonai A, Kovacs E, Petrik E, Kovacs J, Graf L, Fidy J, Naiki H, Goto Y et al. (2009) Mechanism of lysophosphatidic acid-induced amyloid fibril formation of beta2-microglobulin in vitro under physiological conditions. Biochemistry 48, 56895699.
  • 50
    Hasegawa K, Tsutsumi-Yasuhara S, Ookoshi T, Ohhashi Y, Kimura H, Takahashi N, Yoshida H, Miyazaki R, Goto Y & Naiki H (2008) Growth of beta2-microglobulin-related amyloid fibrils by non-esterified fatty acids at a neutral pH. Biochem J 416, 307315.
  • 51
    Yamamoto S, Hasegawa K, Yamaguchi I, Tsutsumi S, Kardos J, Goto Y, Gejyo F & Naiki H (2004) Low concentrations of sodium dodecyl sulfate induce the extension of beta2-microglobulin-related amyloid fibrils at a neutral pH. Biochemistry 43, 1107511082.
  • 52
    Srikanth R, Mendoza VL, Bridgewater JD, Zhang G & Vachet RW (2009) Copper binding to beta2-microglobulin and its pre-amyloid oligomers. Biochemistry 48, 98719881.
  • 53
    Calabrese MF & Miranker AD (2009) Metal binding sheds light on mechanisms of amyloid assembly. Prion 3, 14.
  • 54
    Blaho DV & Miranker AD (2009) Delineating the conformational elements responsible for Cu(2+)-induced oligomerization of beta2-microglobulin. Biochemistry 48, 66106617.
  • 55
    Calabrese MF, Eakin CM, Wang JM & Miranker AD (2008) A regulatable switch mediates self-association in an immunoglobulin fold. Nat Struct Mol Biol 15, 965971.
  • 56
    Antwi K, Mahar M, Srikanth R, Olbris MR, Tyson JF & Vachet RW (2008) Cu(II) organizes beta2-microglobulin oligomers but is released upon amyloid formation. Protein Sci 17, 748759.
  • 57
    Calabrese MF & Miranker AD (2007) Formation of a stable oligomer of beta2-microglobulin requires only transient encounter with Cu(II). J Mol Biol 367, 17.
  • 58
    Eakin CM, Berman AJ & Miranker AD (2006) A native to amyloidogenic transition regulated by a backbone trigger. Nat Struct Mol Biol 13, 202208.
  • 59
    Deng NJ, Yan L, Singh D & Cieplak P (2006) Molecular basis for the Cu2+ binding-induced destabilization of beta2-microglobulin revealed by molecular dynamics simulation. Biophys J 90, 38653879.
  • 60
    Yamamoto S, Yamaguchi I, Hasegawa K, Tsutsumi S, Goto Y, Gejyo F & Naiki H (2004) Glycosaminoglycans enhance the trifluoroethanol-induced extension of beta2-microglobulin-related amyloid fibrils at a neutral pH. J Am Soc Nephrol 15, 126133.
  • 61
    Giorgetti S, Rossi A, Mangione P, Raimondi S, Marini S, Stoppini M, Corazza A, Viglino P, Esposito G, Cetta G et al. (2005) Beta2-microglobulin isoforms display an heterogeneous affinity for type I collagen. Protein Sci 14, 696702.
  • 62
    Smith DP, Jones S, Serpell LC, Sunde M & Radford SE (2003) A systematic investigation into the effect of protein destabilisation on beta2-microglobulin amyloid formation. J Mol Biol 330, 943954.
  • 63
    Armen RS & Daggett V (2005) Characterization of two distinct beta2-microglobulin unfolding intermediates that may lead to amyloid fibrils of different morphology. Biochemistry 44, 1609816107.
  • 64
    Armen RS, DeMarco ML, Alonso DO & Daggett V (2004) Pauling and Corey’s alpha-pleated sheet structure may define the prefibrillar amyloidogenic intermediate in amyloid disease. Proc Natl Acad Sci USA 101, 1162211627.
  • 65
    Fogolari F, Corazza A, Viglino P, Zuccato P, Pieri L, Faccioli P, Bellotti V & Esposito G (2007) Molecular dynamics simulation suggests possible interaction patterns at early steps of beta2-microglobulin aggregation. Biophys J 92, 16731681.
  • 66
    Corazza A, Rennella E, Schanda P, Mimmi MC, Cutuil T, Raimondi S, Giorgetti S, Fogolari F, Viglino P, Frydman L et al. (2010) Native-unlike long-lived intermediates along the folding pathway of the amyloidogenic protein beta2-microglobulin revealed by real-time two-dimensional NMR. J Biol Chem 285, 58275835.
  • 67
    Jahn TR, Parker MJ, Homans SW & Radford SE (2006) Amyloid formation under physiological conditions proceeds via a native-like folding intermediate. Nat Struct Mol Biol 13, 195201.
  • 68
    Kameda A, Hoshino M, Higurashi T, Takahashi S, Naiki H & Goto Y (2005) Nuclear magnetic resonance characterization of the refolding intermediate of beta2-microglobulin trapped by non-native prolyl peptide bond. J Mol Biol 348, 383397.
  • 69
    Sakata M, Chatani E, Kameda A, Sakurai K, Naiki H & Goto Y (2008) Kinetic coupling of folding and prolyl isomerization of beta2-microglobulin studied by mutational analysis. J Mol Biol 382, 12421255.
  • 70
    Pawar AP, Dubay KF, Zurdo J, Chiti F, Vendruscolo M & Dobson CM (2005) Prediction of ‘aggregation-prone’ and ‘aggregation-susceptible’ regions in proteins associated with neurodegenerative diseases. J Mol Biol 350, 379392.
  • 71
    Canet D, Last AM, Tito P, Sunde M, Spencer A, Archer DB, Redfield C, Robinson CV & Dobson CM (2002) Local cooperativity in the unfolding of an amyloidogenic variant of human lysozyme. Nat Struct Biol 9, 308315.
  • 72
    Dumoulin M, Canet D, Last AM, Pardon E, Archer DB, Muyldermans S, Wyns L, Matagne A, Robinson CV, Redfield C et al. (2005) Reduced global cooperativity is a common feature underlying the amyloidogenicity of pathogenic lysozyme mutations. J Mol Biol 346, 773788.
  • 73
    Plakoutsi G, Taddei N, Stefani M & Chiti F (2004) Aggregation of the acylphosphatase from Sulfolobus solfataricus: the folded and partially unfolded states can both be precursors for amyloid formation. J Biol Chem 279, 1411114119.
  • 74
    Plakoutsi G, Bemporad F, Calamai M, Taddei N, Dobson CM & Chiti F (2005) Evidence for a mechanism of amyloid formation involving molecular reorganisation within native-like precursor aggregates. J Mol Biol 351, 910922.
  • 75
    Colon W & Kelly JW (1992) Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry 31, 86548660.
  • 76
    Lai Z, Colon W & Kelly JW (1996) The acid-mediated denaturation pathway of transthyretin yields a conformational intermediate that can self-assemble into amyloid. Biochemistry 35, 64706482.
  • 77
    Liu K, Cho HS, Lashuel HA, Kelly JW & Wemmer DE (2000) A glimpse of a possible amyloidogenic intermediate of transthyretin. Nat Struct Biol 7, 754757.
  • 78
    Elam JS, Taylor AB, Strange R, Antonyuk S, Doucette PA, Rodriguez JA, Hasnain SS, Hayward LJ, Valentine JS, Yeates TO et al. (2003) Amyloid-like filaments and water-filled nanotubes formed by SOD1 mutant proteins linked to familial ALS. Nat Struct Biol 10, 461467.
  • 79
    Banci L, Bertini I, D’Amelio N, Gaggelli E, Libralesso E, Matecko I, Turano P & Valentine JS (2005) Fully metallated S134N Cu,Zn-superoxide dismutase displays abnormal mobility and intermolecular contacts in solution. J Biol Chem 280, 3581535821.
  • 80
    Nordlund A & Oliveberg M (2006) Folding of Cu/Zn superoxide dismutase suggests structural hotspots for gain of neurotoxic function in ALS: parallels to precursors in amyloid disease. Proc Natl Acad Sci USA 103, 1021810223.
  • 81
    Chiti F, Mangione P, Andreola A, Giorgetti S, Stefani M, Dobson CM, Bellotti V & Taddei N (2001) Detection of two partially structured species in the folding process of the amyloidogenic protein beta2-microglobulin. J Mol Biol 307, 379391.
  • 82
    Chiti F, De Lorenzi E, Grossi S, Mangione P, Giorgetti S, Caccialanza G, Dobson CM, Merlini G, Ramponi G & Bellotti V (2001) A partially structured species of beta2-microglobulin is significantly populated under physiological conditions and involved in fibrillogenesis. J Biol Chem 276, 4671446721.
  • 83
    Heegaard NH, Sen JW, Kaarsholm NC & Nissen MH (2001) Conformational intermediate of the amyloidogenic protein beta2-microglobulin at neutral pH. J Biol Chem 276, 3265732662.
  • 84
    Benyamini H, Gunasekaran K, Wolfson H & Nussinov R (2003) Beta2-microglobulin amyloidosis: insights from conservation analysis and fibril modelling by protein docking techniques. J Mol Biol 330, 159174.
  • 85
    Goto Y, Azuma T & Hamaguchi K (1979) Refolding of the immunoglobulin light chain. J Biochem 85, 14271438.
  • 86
    Goto Y & Hamaguchi K (1982) Unfolding and refolding of the reduced constant fragment of the immunoglobulin light chain. Kinetic role of the intrachain disulfide bond. J Mol Biol 156, 911926.
  • 87
    Goto Y & Hamaguchi K (1982) Unfolding and refolding of the constant fragment of the immunoglobulin light chain. J Mol Biol 156, 891910.
  • 88
    Thies MJ, Mayer J, Augustine JG, Frederick CA, Lilie H & Buchner J (1999) Folding and association of the antibody domain CH3: prolyl isomerization precedes dimerization. J Mol Biol 293, 6779.
  • 89
    Feige MJ, Walter S & Buchner J (2004) Folding mechanism of the CH2 antibody domain. J Mol Biol 344, 107118.
  • 90
    Feige MJ, Groscurth S, Marcinowski M, Yew ZT, Truffault V, Paci E, Kessler H & Buchner J (2008) The structure of a folding intermediate provides insight into differences in immunoglobulin amyloidogenicity. Proc Natl Acad Sci USA 105, 1337313378.
  • 91
    Feige MJ, Groscurth S, Marcinowski M, Shimizu Y, Kessler H, Hendershot LM & Buchner J (2009) An unfolded CH1 domain controls the assembly and secretion of IgG antibodies. Mol Cell 34, 569579.
  • 92
    Villanueva J, Hoshino M, Katou H, Kardos J, Hasegawa K, Naiki H & Goto Y (2004) Increase in the conformational flexibility of beta2-microglobulin upon copper binding: a possible role for copper in dialysis-related amyloidosis. Protein Sci 13, 797809.
  • 93
    Borysik AJ, Morten IJ, Radford SE & Hewitt EW (2007) Specific glycosaminoglycans promote unseeded amyloid formation from beta2-microglobulin under physiological conditions. Kidney Int 72, 174181.
  • 94
    Kihara M, Chatani E, Sakai M, Hasegawa K, Naiki H & Goto Y (2005) Seeding-dependent maturation of beta2-microglobulin amyloid fibrils at neutral pH. J Biol Chem 280, 1201212018.
  • 95
    Ohhashi Y, Kihara M, Naiki H & Goto Y (2005) Ultrasonication-induced amyloid fibril formation of beta2-microglobulin. J Biol Chem 280, 3284332848.
  • 96
    Sasahara K, Yagi H, Naiki H & Goto Y (2007) Heat-induced conversion of beta2-microglobulin and hen egg-white lysozyme into amyloid fibrils. J Mol Biol 372, 981991.
  • 97
    Sasahara K, Yagi H, Sakai M, Naiki H & Goto Y (2008) Amyloid nucleation triggered by agitation of beta2-microglobulin under acidic and neutral pH conditions. Biochemistry 47, 26502660.
  • 98
    Jones S, Smith DP & Radford SE (2003) Role of the N and C-terminal strands of beta2-microglobulin in amyloid formation at neutral pH. J Mol Biol 330, 935941.
  • 99
    Piazza R, Pierno M, Iacopini S, Mangione P, Esposito G & Bellotti V (2006) Micro-heterogeneity and aggregation in beta2-microglobulin solutions: effects of temperature, pH, and conformational variant addition. Eur Biophys J 35, 439445.
  • 100
    Giorgetti S, Stoppini M, Tennent GA, Relini A, Marchese L, Raimondi S, Monti M, Marini S, Ostergaard O, Heegaard NH et al. (2007) Lysine 58-cleaved beta2-microglobulin is not detectable by 2D electrophoresis in ex vivo amyloid fibrils of two patients affected by dialysis-related amyloidosis. Protein Sci 16, 343349.
  • 101
    Colombo M, Ricagno S, Barbiroli A, Santambrogio C, Giorgetti S, Raimondi S, Bonomi F, Grandori R, Bellotti V & Bolognesi M (2011) The effects of an ideal beta-turn on beta2-microglobulin fold stability. J Biochem, in press. doi:10.1093/jb/mvr034.
  • 102
    Heegaard NH, Jorgensen TJ, Rozlosnik N, Corlin DB, Pedersen JS, Tempesta AG, Roepstorff P, Bauer R & Nissen MH (2005) Unfolding, aggregation, and seeded amyloid formation of lysine-58-cleaved beta2-microglobulin. Biochemistry 44, 43974407.
  • 103
    Mimmi MC, Jorgensen TJ, Pettirossi F, Corazza A, Viglino P, Esposito G, De Lorenzi E, Giorgetti S, Pries M, Corlin DB et al. (2006) Variants of beta2-microglobulin cleaved at lysine-58 retain the main conformational features of the native protein but are more conformationally heterogeneous and unstable at physiological temperature. FEBS J 273, 24612474.
  • 104
    Corlin DB, Johnsen CK, Nissen MH & Heegaard NH (2009) A beta2-microglobulin cleavage variant fibrillates at near-physiological pH. Biochem Biophys Res Commun 381, 187191.
  • 105
    Miura Y, Ishiyama T, Inomata A, Takeda T, Senma S, Okuyama K & Suzuki Y (1992) Radiolucent bone cysts and the type of dialysis membrane used in patients undergoing long-term hemodialysis. Nephron 60, 268273.
  • 106
    Eakin CM, Attenello FJ, Morgan CJ & Miranker AD (2004) Oligomeric assembly of native-like precursors precedes amyloid formation by beta2-microglobulin. Biochemistry 43, 78087815.
  • 107
    Eakin CM, Knight JD, Morgan CJ, Gelfand MA & Miranker AD (2002) Formation of a copper specific binding site in non-native states of beta2-microglobulin. Biochemistry 41, 1064610656.
  • 108
    Mendoza VL, Antwi K, Baron-Rodriguez MA, Blanco C & Vachet RW (2010) Structure of the preamyloid dimer of beta2-microglobulin from covalent labeling and mass spectrometry. Biochemistry 49, 15221532.
  • 109
    Kameda A, Morita EH, Sakurai K, Naiki H & Goto Y (2009) NMR-based characterization of a refolding intermediate of beta2-microglobulin labeled using a wheat germ cell-free system. Protein Sci 18, 15921601.
  • 110
    Booth DR, Sunde M, Bellotti V, Robinson CV, Hutchinson WL, Fraser PE, Hawkins PN, Dobson CM, Radford SE, Blake CC et al. (1997) Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature 385, 787793.
  • 111
    Moraitakis G & Goodfellow JM (2003) Simulations of human lysozyme: probing the conformations triggering amyloidosis. Biophys J 84, 21492158.
  • 112
    Kelly JW (1998) The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr Opin Struct Biol 8, 101106.
  • 113
    Marcon G, Plakoutsi G, Canale C, Relini A, Taddei N, Dobson CM, Ramponi G & Chiti F (2005) Amyloid formation from HypF-N under conditions in which the protein is initially in its native state. J Mol Biol 347, 323335.
  • 114
    Khare SD & Dokholyan NV (2006) Common dynamical signatures of familial amyotrophic lateral sclerosis-associated structurally diverse Cu, Zn superoxide dismutase mutants. Proc Natl Acad Sci USA 103, 31473152.
  • 115
    Chiti F & Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75, 333366.
  • 116
    Chiti F & Dobson CM (2009) Amyloid formation by globular proteins under native conditions. Nat Chem Biol 5, 1522.
  • 117
    Corlin DB, Sen JW, Ladefoged S, Lund GB, Nissen MH & Heegaard NH (2005) Quantification of cleaved beta2-microglobulin in serum from patients undergoing chronic hemodialysis. Clin Chem 51, 11771184.
  • 118
    Heegaard NH, Jorgensen TJ, Cheng L, Schou C, Nissen MH & Trapp O (2006) Interconverting conformations of variants of the human amyloidogenic protein beta2-microglobulin quantitatively characterized by dynamic capillary electrophoresis and computer simulation. Anal Chem 78, 36673673.
  • 119
    Yamaguchi K, Naiki H & Goto Y (2006) Mechanism by which the amyloid-like fibrils of a beta2-microglobulin fragment are induced by fluorine-substituted alcohols. J Mol Biol 363, 279288.
  • 120
    Bellotti V, Stoppini M, Mangione P, Sunde M, Robinson C, Asti L, Brancaccio D & Ferri G (1998) Beta2-microglobulin can be refolded into a native state from ex vivo amyloid fibrils. Eur J Biochem 258, 6167.
  • 121
    Santambrogio C, Ricagno S, Colombo M, Barbiroli A, Bonomi F, Bellotti V, Bolognesi M & Grandori R (2010) DE-loop mutations affect beta2-microglobulin stability, oligomerization, and the low-pH unfolded form. Protein Sci 19, 13861394.
  • 122
    Fogolari F, Corazza A, Varini N, Rotter M, Gumral D, Codutti L, Rennella E, Viglino P, Bellotti V & Esposito G (2011) Molecular dynamics simulation of beta2-microglobulin in denaturing and stabilizing conditions. Proteins 79, 9861001.
  • 123
    Monti M, Amoresano A, Giorgetti S, Bellotti V & Pucci P (2005) Limited proteolysis in the investigation of beta2-microglobulin amyloidogenic and fibrillar states. Biochim Biophys Acta 1753, 4450.
  • 124
    Liu C, Sawaya MR & Eisenberg D (2010) Beta-microglobulin forms three-dimensional domain-swapped amyloid fibrils with disulfide linkages. Nat Struct Mol Biol 18, 4955.
  • 125
    Domanska K, Vanderhaegen S, Srinivasan V, Pardon E, Dupeux F, Marquez JA, Giorgetti S, Stoppini M, Wyns L, Bellotti V et al. (2011) Atomic structure of a nanobody-trapped domain-swapped dimer of an amyloidogenic beta2-microglobulin variant. Proc Natl Acad Sci USA 108, 13141319.
  • 126
    Chen Y & Dokholyan NV (2005) A single disulfide bond differentiates aggregation pathways of beta2-microglobulin. J Mol Biol 354, 473482.
  • 127
    Stoppini M, Mangione P, Monti M, Giorgetti S, Marchese L, Arcidiaco P, Verga L, Segagni S, Pucci P, Merlini G et al. (2005) Proteomics of beta2-microglobulin amyloid fibrils. Biochim Biophys Acta 1753, 2333.
  • 128
    Eichner T & Radford SE (2011) A diversity of assembly mechanisms for a generic amyloid fold. Mol Cell, in press.
  • 129
    Brundin P, Melki R & Kopito R (2010) Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol 11, 301307.
  • 130
    Sindi SS & Serio TR (2009) Prion dynamics and the quest for the genetic determinant in protein-only inheritance. Curr Opin Microbiol 12, 623630.
  • 131
    Miller G (2009) Neurodegeneration. Could they all be prion diseases? Science 326, 13371339.
  • 132
    Ladner CL, Chen M, Smith DP, Platt GW, Radford SE & Langen R (2010) Stacked sets of parallel, in-register beta-strands of beta2-microglobulin in amyloid fibrils revealed by site-directed spin labeling and chemical labeling. J Biol Chem 285, 1713717147.
  • 133
    Debelouchina GT, Platt GW, Bayro MJ, Radford SE & Griffin RG (2010) Magic angle spinning NMR analysis of beta2-microglobulin amyloid fibrils in two distinct morphologies. J Am Chem Soc 132, 1041410423.
  • 134
    Debelouchina GT, Platt GW, Bayro MJ, Radford SE & Griffin RG (2010) Intermolecular alignment in beta2-microglobulin amyloid fibrils. J Am Chem Soc 132, 1707717079.
  • 135
    Jahn TR, Tennent GA & Radford SE (2008) A common beta-sheet architecture underlies in vitro and in vivo beta2-microglobulin amyloid fibrils. J Biol Chem 283, 1727917286.
  • 136
    Borbulevych OY, Do P & Baker BM (2010) Structures of native and affinity-enhanced WT1 epitopes bound to HLA-A*0201: implications for WT1-based cancer therapeutics. Mol Immunol 47, 25192524.
  • 137
    Kihara M, Chatani E, Iwata K, Yamamoto K, Matsuura T, Nakagawa A, Naiki H & Goto Y (2006) Conformation of amyloid fibrils of beta2-microglobulin probed by tryptophan mutagenesis. J Biol Chem 281, 3106131069.
  • 138
    Hodkinson JP, Ashcroft AE & Radford SE (2011) Protein misfolding and toxicity in dialysis related amyloidosis. Prefibrillar amyloidogenic protein assemblies – common cytotoxins underlying degenerative diseases. Springer, in press
  • 139
    White HE, Hodgkinson JL, Jahn TR, Cohen-Krausz S, Gosal WS, Muller S, Orlova EV, Radford SE & Saibil HR (2009) Globular tetramers of beta2-microglobulin assemble into elaborate amyloid fibrils. J Mol Biol 389, 4857.