SEARCH

SEARCH BY CITATION

References

  • 1
    Polevoda B & Sherman F (2003) N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins. J Mol Biol 325, 595622.
  • 2
    Aivaliotis M, Gevaert K, Falb M, Tebbe A, Konstantinidis K, Bisle B, Klein C, Martens L, Staes A, Timmerman E et al. (2007) Large-scale identification of N-terminal peptides in the halophilic archaea Halobacterium salinarum and Natronomonas pharaonis. J Proteome Res 6, 21952204.
  • 3
    Martinez A, Traverso JA, Valot B, Ferro M, Espagne C, Ephritikhine G, Zivy M, Giglione C & Meinnel T (2008) Extent of N-terminal modifications in cytosolic proteins from eukaryotes. Proteomics 8, 28092831.
  • 4
    Arnesen T, Van Damme P, Polevoda B, Helsens K, Evjenth R, Colaert N, Varhaug JE, Vandekerckhove J, Lillehaug JR, Sherman F et al. (2009) Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans. Proc Natl Acad Sci USA 106, 81578162.
  • 5
    Brown JL & Roberts WK (1976) Evidence that approximately eighty per cent of the soluble proteins from Ehrlich ascites cells are Nalpha-acetylated. J Biol Chem 251, 10091014.
  • 6
    Gautschi M, Just S, Mun A, Ross S, Rucknagel P, Dubaquie Y, Ehrenhofer-Murray A & Rospert S (2003) The yeast N(alpha)-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides. Mol Cell Biol 23, 74037414.
  • 7
    Starheim KK, Arnesen T, Gromyko D, Ryningen A, Varhaug JE & Lillehaug JR (2008) Identification of the human N(alpha)-acetyltransferase complex B (hNatB): a complex important for cell-cycle progression. Biochem J 415, 325331.
  • 8
    Starheim KK, Gromyko D, Evjenth R, Ryningen A, Varhaug JE, Lillehaug JR & Arnesen T (2009) Knockdown of human N alpha-terminal acetyltransferase complex C leads to p53-dependent apoptosis and aberrant human Arl8b localization. Mol Cell Biol 29, 35693581.
  • 9
    Polevoda B, Brown S, Cardillo TS, Rigby S & Sherman F (2008) Yeast N(alpha)-terminal acetyltransferases are associated with ribosomes. J Cell Biochem 103, 492508.
  • 10
    Strous GJ, Berns AJ & Bloemendal H (1974) N-terminal acetylation of the nascent chains of alpha-crystallin. Biochem Biophys Res Commun 58, 876884.
  • 11
    Strous GJ, van Westreenen H & Bloemendal H (1973) Synthesis of lens protein in vitro. N-terminal acetylation of alpha-crystallin. Eur J Biochem 38, 7985.
  • 12
    Polevoda B, Arnesen T & Sherman F (2009) A synopsis of eukaryotic Nalpha-terminal acetyltransferases: nomenclature, subunits and substrates. BMC Proc 3(Suppl 6), S2.
  • 13
    Van Damme P, Hole K, Pimenta-Marques A, Helsens K, Vandekerckhove J, Martinho RG, Gevaert K & Arnesen T (2011) NatF contributes to an evolutionary shift in protein N-terminal acetylation and is important for normal chromosome segregation. PLoS Genet doi:10.1371/journal.pgen.1002169.
  • 14
    Arnesen T, Anderson D, Baldersheim C, Lanotte M, Varhaug JE & Lillehaug JR (2005) Identification and characterization of the human ARD1–NATH protein acetyltransferase complex. Biochem J 386, 433443.
  • 15
    Mullen JR, Kayne PS, Moerschell RP, Tsunasawa S, Gribskov M, Colavito-Shepanski M, Grunstein M, Sherman F & Sternglanz R (1989) Identification and characterization of genes and mutants for an N-terminal acetyltransferase from yeast. EMBO J 8, 20672075.
  • 16
    Park EC & Szostak JW (1992) ARD1 and NAT1 proteins form a complex that has N-terminal acetyltransferase activity. EMBO J 11, 20872093.
  • 17
    Van Damme P, Evjenth R, Foyn H, Demeyer K, De Bock PJ, Lillehaug JR, Vandekerckhove J, Arnesen T & Gevaert K (2011) Proteome-derived peptide libraries allow detailed analysis of the substrate specificities of N{alpha}-acetyltransferases and point to hNaa10p as the posttranslational actin N{alpha}-acetyltransferase. Mol Cell Proteomics doi:10.1074/mcp.M110.004580.
  • 18
    Arnesen T, Starheim KK, Van Damme P, Evjenth R, Dinh H, Betts MJ, Ryningen A, Vandekerckhove J, Gevaert K & Anderson D (2010) The chaperone-like protein HYPK acts together with NatA in cotranslational N-terminal acetylation and prevention of Huntingtin aggregation. Mol Cell Biol 30, 18981909.
  • 19
    Polevoda B, Norbeck J, Takakura H, Blomberg A & Sherman F (1999) Identification and specificities of N-terminal acetyltransferases from Saccharomyces cerevisiae. EMBO J 18, 61556168.
  • 20
    Polevoda B, Cardillo TS, Doyle TC, Bedi GS & Sherman F (2003) Nat3p and Mdm20p are required for function of yeast NatB Nalpha-terminal acetyltransferase and of actin and tropomyosin. J Biol Chem 278, 3068630697.
  • 21
    Helbig AO, Rosati S, Pijnappel PW, van Breukelen B, Timmers MH, Mohammed S, Slijper M & Heck AJ (2010) Perturbation of the yeast N-acetyltransferase NatB induces elevation of protein phosphorylation levels. BMC Genomics 11, 685.
  • 22
    Tercero JC & Wickner RB (1992) MAK3 encodes an N-acetyltransferase whose modification of the L–A gag NH2 terminus is necessary for virus particle assembly. J Biol Chem 267, 2027720281.
  • 23
    Polevoda B & Sherman F (2001) NatC Nalpha-terminal acetyltransferase of yeast contains three subunits, Mak3p, Mak10p, and Mak31p. J Biol Chem 276, 2015420159.
  • 24
    Song OK, Wang X, Waterborg JH & Sternglanz R (2003) An Nalpha-acetyltransferase responsible for acetylation of the N-terminal residues of histones H4 and H2A. J Biol Chem 278, 3810938112.
  • 25
    Arnesen T, Anderson D, Torsvik J, Halseth HB, Varhaug JE & Lillehaug JR (2006) Cloning and characterization of hNAT5/hSAN: an evolutionarily conserved component of the NatA protein N-alpha-acetyltransferase complex. Gene 371, 291295.
  • 26
    Williams BC, Garrett-Engele CM, Li Z, Williams EV, Rosenman ED & Goldberg ML (2003) Two putative acetyltransferases, san and deco, are required for establishing sister chromatid cohesion in Drosophila. Curr Biol 13, 20252036.
  • 27
    Hou F, Chu CW, Kong X, Yokomori K & Zou H (2007) The acetyltransferase activity of San stabilizes the mitotic cohesin at the centromeres in a shugoshin-independent manner. J Cell Biol 177, 587597.
  • 28
    Evjenth R, Hole K, Karlsen OA, Ziegler M, Arnesen T & Lillehaug JR (2009) Human Naa50p (Nat5/San) displays both protein N alpha- and N epsilon-acetyltransferase activity. J Biol Chem 284, 3112231129.
  • 29
    Hwang CS, Shemorry A & Varshavsky A (2010) N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327, 973977.
  • 30
    Goetze S, Qeli E, Mosimann C, Staes A, Gerrits B, Roschitzki B, Mohanty S, Niederer EM, Laczko E, Timmerman E et al. (2009) Identification and functional characterization of N-terminally acetylated proteins in Drosophila melanogaster. PLoS Biol 7, e1000236.
  • 31
    Behnia R, Panic B, Whyte JR & Munro S (2004) Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p. Nat Cell Biol 6, 405413.
  • 32
    Hofmann I & Munro S (2006) An N-terminally acetylated Arf-like GTPase is localised to lysosomes and affects their motility. J Cell Sci 119, 14941503.
  • 33
    Setty SR, Strochlic TI, Tong AH, Boone C & Burd CG (2004) Golgi targeting of ARF-like GTPase Arl3p requires its Nalpha-acetylation and the integral membrane protein Sys1p. Nat Cell Biol 6, 414419.
  • 34
    Ashiuchi M, Yagami T, Willey RJ, Padovan JC, Chait BT, Popowicz A, Manning LR & Manning JM (2005) N-terminal acetylation and protonation of individual hemoglobin subunits: position-dependent effects on tetramer strength and cooperativity. Protein Sci 14, 14581471.
  • 35
    Manning LR & Manning JM (2001) The acetylation state of human fetal hemoglobin modulates the strength of its subunit interactions: long-range effects and implications for histone interactions in the nucleosome. Biochemistry 40, 16351639.
  • 36
    Helbig AO, Gauci S, Raijmakers R, van Breukelen B, Slijper M, Mohammed S & Heck AJ (2010) Profiling of N-acetylated protein termini provides in-depth insights into the N-terminal nature of the proteome. Mol Cell Proteomics 9, 928939.
  • 37
    Palenchar PM (2008) Amino acid biases in the N- and C-termini of proteins are evolutionarily conserved and are conserved between functionally related proteins. Protein J 27, 283291.
  • 38
    Polevoda B & Sherman F (2002) The diversity of acetylated proteins. Genome Biol 3, reviews0006.
  • 39
    Falb M, Aivaliotis M, Garcia-Rizo C, Bisle B, Tebbe A, Klein C, Konstantinidis K, Siedler F, Pfeiffer F & Oesterhelt D (2006) Archaeal N-terminal protein maturation commonly involves N-terminal acetylation: a large-scale proteomics survey. J Mol Biol 362, 915924.
  • 40
    Kirkland PA, Humbard MA, Daniels CJ & Maupin-Furlow JA (2008) Shotgun proteomics of the haloarchaeon Haloferax volcanii. J Proteome Res 7, 50335039.
  • 41
    Mackay DT, Botting CH, Taylor GL & White MF (2007) An acetylase with relaxed specificity catalyses protein N-terminal acetylation in Sulfolobus solfataricus. Mol Microbiol 64, 15401548.
  • 42
    Arnesen T, Gromyko D, Horvli O, Fluge O, Lillehaug J & Varhaug JE (2005) Expression of N-acetyl transferase human and human Arrest defective 1 proteins in thyroid neoplasms. Thyroid 15, 11311136.
  • 43
    Malen H, Lillehaug JR & Arnesen T (2009) The protein Nalpha-terminal acetyltransferase hNaa10p (hArd1) is phosphorylated in HEK293 cells. BMC Res Notes 2, 32.
  • 44
    Arnesen T, Betts MJ, Pendino F, Liberles DA, Anderson D, Caro J, Kong X, Varhaug JE & Lillehaug JR (2006) Characterization of hARD2, a processed hARD1 gene duplicate, encoding a human protein N-alpha-acetyltransferase. BMC Biochem 7, 13.
  • 45
    Arnesen T, Gromyko D, Kagabo D, Betts MJ, Starheim KK, Varhaug JE, Anderson D & Lillehaug JR (2009) A novel human NatA Nalpha-terminal acetyltransferase complex: hNaa16p-hNaa10p (hNat2-hArd1). BMC Biochem 10, 15.
  • 46
    Chun KH, Cho SJ, Choi JS, Kim SH, Kim KW & Lee SK (2007) Differential regulation of splicing, localization and stability of mammalian ARD1235 and ARD1225 isoforms. Biochem Biophys Res Commun 353, 1825.
  • 47
    Nilsen TW & Graveley BR (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature 463, 457463.
  • 48
    Davuluri RV, Suzuki Y, Sugano S, Plass C & Huang TH (2008) The functional consequences of alternative promoter use in mammalian genomes. Trends Genet 24, 167177.
  • 49
    Jackson RJ, Hellen CU & Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11, 113127.
  • 50
    Sunderland PA, West CE, Waterworth WM & Bray CM (2004) Choice of a start codon in a single transcript determines DNA ligase 1 isoform production and intracellular targeting in Arabidopsis thaliana. Biochem Soc Trans 32, 614616.
  • 51
    Ryabova LA, Pooggin MM & Hohn T (2002) Viral strategies of translation initiation: ribosomal shunt and reinitiation. Prog Nucleic Acid Res Mol Biol 72, 139.
  • 52
    Kozak M (2005) Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 361, 1337.
  • 53
    Peri S & Pandey A (2001) A reassessment of the translation initiation codon in vertebrates. Trends Genet 17, 685687.
  • 54
    Bazykin GA & Kochetov AV (2011) Alternative translation start sites are conserved in eukaryotic genomes. Nucleic Acids Res 39, 567577.
  • 55
    Churbanov A, Rogozin IB, Babenko VN, Ali H & Koonin EV (2005) Evolutionary conservation suggests a regulatory function of AUG triplets in 5′-UTRs of eukaryotic genes. Nucleic Acids Res 33, 55125520.
  • 56
    Resch AM, Ogurtsov AY, Rogozin IB, Shabalina SA & Koonin EV (2009) Evolution of alternative and constitutive regions of mammalian 5′UTRs. BMC Genomics 10, 162.
  • 57
    Cai J, Huang Y, Li F & Li Y (2006) Alteration of protein subcellular location and domain formation by alternative translational initiation. Proteins 62, 793799.
  • 58
    Strubin M, Long EO & Mach B (1986) Two forms of the Ia antigen-associated invariant chain result from alternative initiations at two in-phase AUGs. Cell 47, 619625.
  • 59
    Descombes P & Schibler U (1991) A liver-enriched transcriptional activator protein, LAP, and a transcriptional inhibitory protein, LIP, are translated from the same mRNA. Cell 67, 569579.
  • 60
    Ossipow V, Descombes P & Schibler U (1993) CCAAT/enhancer-binding protein mRNA is translated into multiple proteins with different transcription activation potentials. Proc Natl Acad Sci USA 90, 82198223.
  • 61
    Courtois S, Verhaegh G, North S, Luciani MG, Lassus P, Hibner U, Oren M & Hainaut P (2002) DeltaN-p53, a natural isoform of p53 lacking the first transactivation domain, counteracts growth suppression by wild-type p53. Oncogene 21, 67226728.
  • 62
    Kobayashi R, Patenia R, Ashizawa S & Vykoukal J (2009) Targeted mass spectrometric analysis of N-terminally truncated isoforms generated via alternative translation initiation. FEBS Lett 583, 24412445.
  • 63
    Touriol C, Bornes S, Bonnal S, Audigier S, Prats H, Prats AC & Vagner S (2003) Generation of protein isoform diversity by alternative initiation of translation at non-AUG codons. Biol Cell 95, 169178.
  • 64
    Cavener DR & Ray SC (1991) Eukaryotic start and stop translation sites. Nucleic Acids Res 19, 31853192.
  • 65
    Cavener DR (1987) Comparison of the consensus sequence flanking translational start sites in Drosophila and vertebrates. Nucleic Acids Res 15, 13531361.
  • 66
    Gordiyenko Y, Deroo S, Zhou M, Videler H & Robinson CV (2008) Acetylation of L12 increases interactions in the Escherichia coli ribosomal stalk complex. J Mol Biol 380, 404414.
  • 67
    Zybailov B, Rutschow H, Friso G, Rudella A, Emanuelsson O, Sun Q & van Wijk KJ (2008) Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS ONE 3, e1994.
  • 68
    Ferro M, Salvi D, Brugiere S, Miras S, Kowalski S, Louwagie M, Garin J, Joyard J & Rolland N (2003) Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol Cell Proteomics 2, 325345.
  • 69
    Wang BC, Wang HX, Feng JX, Meng DZ, Qu LJ & Zhu YX (2006) Post-translational modifications, but not transcriptional regulation, of major chloroplast RNA-binding proteins are related to Arabidopsis seedling development. Proteomics 6, 25552563.
  • 70
    Bienvenut WV, Espagne C, Martinez A, Majeran W, Valot B, Zivy M, Vallon O, Adam Z, Meinnel T & Giglione C (2011) Dynamics of post-translational modifications and protein stability in the stroma of Chlamydomonas reinhardtii chloroplasts. Proteomics 11, 17341750.
  • 71
    Cook RK, Sheff DR & Rubenstein PA (1991) Unusual metabolism of the yeast actin amino terminus. J Biol Chem 266, 1682516833.
  • 72
    Cook RK, Blake WT & Rubenstein PA (1992) Removal of the amino-terminal acidic residues of yeast actin. Studies in vitro and in vivo. J Biol Chem 267, 94309436.
  • 73
    Sheff DR & Rubenstein PA (1992) Isolation and characterization of the rat liver actin N-acetylaminopeptidase. J Biol Chem 267, 2021720224.
  • 74
    Martin DJ & Rubenstein PA (1987) Alternate pathways for removal of the class II actin initiator methionine. J Biol Chem 262, 63506356.
  • 75
    Staes A, Van Damme P, Helsens K, Demol H, Vandekerckhove J & Gevaert K (2008) Improved recovery of proteome-informative, protein N-terminal peptides by combined fractional diagonal chromatography (COFRADIC). Proteomics 8, 13621370.
  • 76
    Gevaert K, Goethals M, Martens L, Van Damme J, Staes A, Thomas GR & Vandekerckhove J (2003) Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. Nat Biotechnol 21, 566569.
  • 77
    Staes A, Impens F, Van Damme P, Ruttens B, Goethals M, Demol H, Timmerman E, Vandekerckhove J & Gevaert K (2011) Selecting protein N-terminal peptides by combined fractional diagonal chromatography. Nat Protocol doi:10.1038/nprot.2011.355.
  • 78
    Kleifeld O, Doucet A, auf dem Keller U, Prudova A, Schilling O, Kainthan RK, Starr AE, Foster LJ, Kizhakkedathu JN & Overall CM (2010) Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products. Nat Biotechnol 28, 281288.
  • 79
    Zhang X, Ye J, Engholm-Keller K & Hojrup P (2011) A proteome-scale study on in vivo protein Nalpha-acetylation using an optimized method. Proteomics 11, 8193.
  • 80
    McDonald L, Robertson DH, Hurst JL & Beynon RJ (2005) Positional proteomics: selective recovery and analysis of N-terminal proteolytic peptides. Nat Methods 2, 955957.
  • 81
    Crimmins DL, Gorka J, Thoma RS & Schwartz BD (1988) Peptide characterization with a sulfoethyl aspartamide column. J Chromatogr 443, 6371.
  • 82
    Dormeyer W, Mohammed S, Breukelen B, Krijgsveld J & Heck AJ (2007) Targeted analysis of protein termini. J Proteome Res 6, 46344645.
  • 83
    Taouatas N, Altelaar AF, Drugan MM, Helbig AO, Mohammed S & Heck AJ (2008) SCX-based fractionation of Lys-N generated peptides facilitates the targeted analysis of post-translational modifications. Mol Cell Proteomics doi:10.1074/mcp.M800285-MCP200.
  • 84
    Meinnel T & Giglione C (2008) Tools for analyzing and predicting N-terminal protein modifications. Proteomics 8, 626649.
  • 85
    Cai YD & Lu L (2008) Predicting N-terminal acetylation based on feature selection method. Biochem Biophys Res Commun 372, 862865.
  • 86
    Arendt CS & Hochstrasser M (1999) Eukaryotic 20S proteasome catalytic subunit propeptides prevent active site inactivation by N-terminal acetylation and promote particle assembly. EMBO J 18, 35753585.
  • 87
    Singer JM & Shaw JM (2003) Mdm20 protein functions with Nat3 protein to acetylate Tpm1 protein and regulate tropomyosin–actin interactions in budding yeast. Proc Natl Acad Sci U S A 100, 76447649.
  • 88
    Inoue A, Ojima T & Nishita K (2004) N-terminal modification and its effect on the biochemical characteristics of Akazara scallop tropomyosins expressed in Escherichia coli. J Biochem 136, 107114.
  • 89
    Geissenhoner A, Weise C & Ehrenhofer-Murray AE (2004) Dependence of ORC silencing function on NatA-mediated Nalpha acetylation in Saccharomyces cerevisiae. Mol Cell Biol 24, 1030010312.
  • 90
    Wang X, Connelly JJ, Wang CL & Sternglanz R (2004) Importance of the Sir3 N terminus and its acetylation for yeast transcriptional silencing. Genetics 168, 547551.
  • 91
    Behnia R, Barr FA, Flanagan JJ, Barlowe C & Munro S (2007) The yeast orthologue of GRASP65 forms a complex with a coiled-coil protein that contributes to ER to Golgi traffic. J Cell Biol 176, 255261.
  • 92
    Murthi A & Hopper AK (2005) Genome-wide screen for inner nuclear membrane protein targeting in Saccharomyces cerevisiae: roles for N-acetylation and an integral membrane protein. Genetics 170, 15531560.
  • 93
    Ogawa H, Gomi T, Takata Y, Date T & Fujioka M (1997) Recombinant expression of rat glycine N-methyltransferase and evidence for contribution of N-terminal acetylation to co-operative binding of S-adenosylmethionine. Biochem J 327 (Pt 2), 407412.
  • 94
    Caesar R & Blomberg A (2004) The stress-induced Tfs1p requires NatB-mediated acetylation to inhibit carboxypeptidase Y and to regulate the protein kinase A pathway. J Biol Chem 279, 3853238543.
  • 95
    Kamita M, Kimura Y, Ino Y, Kamp RM, Polevoda B, Sherman F & Hirano H (2011) N(alpha)-Acetylation of yeast ribosomal proteins and its effect on protein synthesis. J Proteomics 74, 431441.