SEARCH

SEARCH BY CITATION

References

  • 1
    Benditt EP, Eriksen N, Hermodson MA & Ericsson LH (1971) The major proteins of human and monkey amyloid substance: common properties including unusual N-terminal amino acid sequences. FEBS Lett 19, 169173.
  • 2
    Glenner GG, Terry W, Harada M, Isersky C & Page D (1971) Amyloid fibril proteins: proof of homology with immunoglobulin light chains by sequence analysis. Science 172, 11501151.
  • 3
    Glenner GG, Eanes ED, Bladen HA, Linke RP & Termine JD (1974) β-pleated sheet fibrils. A comparison of native amyloid with synthetic protein fibrils. J Histochem Cytochem 22, 11411158.
  • 4
    Benditt EP & Eriksen N (1971) Chemical classes of amyloid substance. Am J Pathol 65, 231252.
  • 5
    Sipe JD, Benson MD, Buxbaum JN, Ikeda S, Merlini G, Saraiva MJ & Westermark P (2010) Amyloid fibril protein nomenclature: 2010 recommendations of the nomenclature committee of the International Society of Amyloidosis. Amyloid 17, 101104.
  • 6
    Sletten K, Westermark P & Natvig JB (1976) Characterization of amyloid fibril proteins from medullary carcinoma of the thyroid. J Exp Med 143, 993998.
  • 7
    Glenner GG & Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120, 885890.
  • 8
    Masters C, Simms G, Weinman NA, Multhaup G, McDonald BL & Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82, 42454249.
  • 9
    Zhu T, Wang Y, He B, Zang J, He Q & Zhang W (2011) Islet amyloid polypeptide acts on glucose- stimulated beta cells to reduce voltage-gated calcium channel activation, intracellular Ca(2+) concentration, and insulin secretion. Diabetes Metab Res Rev 27, 2834.
  • 10
    Betsholtz C, Svensson V, Rorsman F, Engström U, Westermark GT, Wilander E, Johnson KH & Westermark P (1989) Islet amyloid polypeptide (IAPP): cDNA cloning and identification of an amyloidogenic region associated with species-specific occurrence of age-related diabetes mellitus. Exp Cell Res 183, 484493.
  • 11
    Nishi M, Sanke T, Seino S, Eddy RL, Fan Y-S, Byers MG, Shows TB, Bell GI & Steiner DF (1989) Human islet amyloid polypeptide gene: complete nucleotide sequence, chromosomal localization, and evolutionary history. Mol Endocrinol 3, 17751781.
  • 12
    Westermark P, Engström U, Johnson KH, Westermark GT & Betsholtz C (1990) Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation. Proc Natl Acad Sci USA 87, 50365040.
  • 13
    Hull RL, Westermark GT, Westermark P & Kahn SE (2004) Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J Clin Endocrinol Metab 89, 36293643.
  • 14
    Westermark P (2011) Amyloid in the islets of Langerhans: thoughts and some historical aspects. Ups J Med Sci 116, 8189.
  • 15
    Guardado-Mendoza R, Davalli AM, Chavez AO, Hubbard GB, Dick EJ, Majluf-Cruz A, Tene-Perez CE, Goldschmidt L, Hart J, Perego C et al. (2009) Pancreatic islet amyloidosis, β-cell apoptosis, and α-cell proliferation are determinants of islet remodeling in type-2 diabetic baboons. Proc Natl Acad Sci USA 106, 1399213997.
  • 16
    Jurgens CA, Toukatly MN, Fligner CL, Udayasankar J, Subramanian SL, Zraika S, Aston-Mourney K, Carr DB, Westermark P, Westermark GT et al. (2011) β-cell loss and β-cell apoptosis in human type 2 diabetes are related to islet amyloid deposition. Am J Pathol 178, 26322640.
  • 17
    Westermark GT, Westermark P, Berne C & Korsgren O (2008) Widespread amyloid deposition in transplanted human pancreatic islets. N Engl J Med 359, 977979.
  • 18
    Udayasankar J, Kodama K, Hull RL, Zraika S, Aston-Mourney K, Subramanian SL, Tong J, Faulenbach MV, Vidal J & Kahn SE (2009) Amyloid formation results in recurrence of hyperglycaemia following transplantation of human IAPP transgenic mouse islets. Diabetologia 52, 145153.
  • 19
    Itoh H & Takei K (2000) Immunohistochemical and statistical studies on the islets of Langerhans pancreas in autopsied patients after gastrectomy. Hum Pathol 31, 13681376.
  • 20
    Alvarsson M, Berntorp K, Ferqvist-Forbes E, Lager I, Steen L, Om T & Grill V (2011) Effects of insulin versus sulphonylurea on beta-cell secretion in recently diagnosed type 2 diabetes patients: a 6-year follow-up study. Rev Diabet Stud 7, 225232.
  • 21
    Hoenig M, Hall G, Ferguson D, Jordan K, Henson M, Johnson K & O’Brien T (2000) A feline model of experimentally induced islet amyloidosis. Am J Pathol 157, 21432150.
  • 22
    Westermark P, Li Z-C, Westermark GT, Leckström A & Steiner DF (1996) Effects of beta cell granule components on human islet amyloid polypeptide fibril formation. FEBS Lett 379, 203206.
  • 23
    Janciauskiene S, Eriksson S, Carlemalm E & Ahrén B (1997) B cell granule peptides affect human islet amyloid polypeptide (IAPP) fibril formation in vitro. Biochem Biophys Res Commun 236, 580585.
  • 24
    Wei L, Jiang P, Yau YH, Summer H, Shochat SG, Mu Y & Pervushin K (2009) Residual structure in islet amyloid polypeptide mediates its interactions with soluble insulin. Biochemistry 48, 23682376.
  • 25
    Alam T, Chen L, Ogawa A, Leffert JD, Unger RH & Luskey KL (1992) Coordinate regulation of amylin and insulin expression in response to hypoglycemia and fasting. Diabetes 41, 508514.
  • 26
    Westermark GT, Leckström A, Zhi M & Westermark P (1998) Increased release of IAPP in response to long-term high fat intake in mice. Horm Metab Res 30, 256258.
  • 27
    Paulsson JF & Westermark GT (2005) Aberrant processing of human proislet amyloid polypeptide results in increased amyloid production. Diabetes 54, 21172125.
  • 28
    Marzban L, Rhodes CJ, Steiner DF, Haataja L, Halban PA & Verchere CB (2006) Impaired NH2-terminal processing of human proislet amyloid polypeptide by the prohormone convertase PC2 leads to amyloid formation and cell death. Diabetes 55, 21922201.
  • 29
    Roder ME, Porte DJ, Schwartz RS & Kahn SE (1998) Disproportionately elevated proinsulin levels reflect the degree of impaired B cell secretory capacity in patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 83, 604608.
  • 30
    Zheng X, Ren W, Zhang S, Liu J, Li S, Li J, Yang P, He J, Su S & Li P (2010) Serum levels of proamylin and amylin in normal subjects and patients with impaired glucose regulation and type 2 diabetes mellitus. Acta Diabetol 47, 265270.
  • 31
    Fox N, Schrementi J, Nishi M, Ohagi S, Chan SJ, Heisserman JA, Westermark GT, Leckström A, Westermark P & Steiner DF (1993) Human islet amyloid polypeptide transgenic mice as a model of non-insulin-dependent diabetes mellitus (NIDDM). FEBS Lett 323, 4044.
  • 32
    Butler AE, Jang J, Gurlo T, Carty MD, Soeller WC & Butler PC (2004) Diabetes due to a progressive defect in beta-cell mass in rats transgenic for human islet amyloid polypeptide (HIP Rat): a new model for type 2 diabetes. Diabetes 53, 15091516.
  • 33
    Westermark GT, Gebre-Medhin S, Steiner DF & Westermark P (2000) Islet amyloid development in a mouse strain lacking endogenous islet amyloid polypeptide (IAPP) but expressing human IAPP. Mol Med 6, 9981007.
  • 34
    Paulsson JF, Andersson A, Westermark P & Westermark GT (2006) Intracellular amyloid-like deposits contain unprocessed pro islet amyloid polypeptide (proIAPP) in beta-cells of transgenic mice overexpressing human IAPP and transplanted human islets. Diabetologia 49, 12371246.
  • 35
    O’Brien TD, Butler AE, Roche PC, Johnson KH & Butler PC (1994) Islet amyloid polypeptide in human insulinomas. Evidence for intracellular amyloidogenesis. Diabetes 43, 329336.
  • 36
    Westermark P, Eizirik DL, Pipeleers DG, Hellerström C & Andersson A (1995) Rapid deposition of amyloid in human islets transplanted into nude mice. Diabetologia 38, 543549.
  • 37
    Lin CY, Gurlo T, Kayed R, Butler AE, Haataja L, Glabe CG & Butler PC (2007) Toxic human islet amyloid polypeptide (h-IAPP) oligomers are intracellular, and vaccination to induce anti-toxic oligomer antibodies does not prevent h-IAPP-induced beta-cell apoptosis in h-IAPP transgenic mice. Diabetes 56, 13241332.
  • 38
    Bertolotti A, Zhang Y, Hendershot LM, Harding HP & Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2, 326332.
  • 39
    Oyadomari S & Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11, 381389.
  • 40
    Huang CJ, Lin CY, Haataja L, Gurlo T, Butler AE, Rizza RA & Butler PC (2007) High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress mediated beta-cell apoptosis, a characteristic of humans with type 2 but not type 1 diabetes. Diabetes 56, 20162027.
  • 41
    Laybutt DR, Preston AM, Akerfeldt MC, Kench JG, Busch AK, Biankin AV & Biden TJ (2007) Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 50, 752763.
  • 42
    Gurlo T, Ryazantsev S, Huang CJ, Yeh MW, Reber HA, Hines OJ, O’Brien TD, Glabe CG & Butler PC (2010) Evidence for proteotoxicity in beta cells in type 2 diabetes: toxic islet amyloid polypeptide oligomers form intracellularly in the secretory pathway. Am J Pathol 176, 861869.
  • 43
    Marzban L, Trigo-Gonzalez G & Verchere CB (2005) Processing of pro-islet amyloid polypeptide in the constitutive and regulated secretory pathways of beta cells. Mol Endocrinol 19, 21542163.
  • 44
    Hull RL, Zraika S, Udayasankar J, Aston-Mourney K, Subramanian SL & Kahn SE (2009) Amyloid formation in human IAPP transgenic mouse islets and pancreas, and human pancreas, is not associated with endoplasmic reticulum stress. Diabetologia 52, 11021111.
  • 45
    Yamamoto A & Simonsen A (2011) The elimination of accumulated and aggregated proteins: a role for aggrephagy in neurodegeneration. Neurobiol Dis 43, 1728.
  • 46
    Nixon RA (2007) Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci 120, 40814091.
  • 47
    Masini M, Bugliani M, Lupi R, del Guerra S, Boggi U, Filipponi F, Marselli L, Masiello P & Marchetti P (2009) Autophagy in human type 2 diabetes pancreatic beta cells. Diabetologia 52, 10831086.
  • 48
    Ling D & Salvaterra PM (2009) A central role for autophagy in Alzheimer-type neurodegeneration. Autophagy 5, 738740.
  • 49
    Schultz SW, Nilsson KP & Westermark GT (2011) Drosophila melanogaster as a model system for studies of islet amyloid polypeptide aggregation. PLoS ONE 6, e20221.
  • 50
    Maedler K, Sergeev P, Ris F, Oberholtzer J, Joller-Jemelka HI, Spinas GA, Kaiser N, Halban PA & Donath MY (2002) Glucose-induced β cell production of IL-1β contributes to glucotoxicity in human pancreatic islets. J Clin Invest 110, 851860.
  • 51
    Masters SL, Dunne A, Subramanian SL, Hull RL, Tannahill GM, Sharp FA, Becker C, Franchi L, Yoshihara E, Chen Z et al. (2010) Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat Immunol 11, 897904.
  • 52
    Kisilevsky R (2000) Review: Amyloidogenesis – unquestioned answers and unanswered questions. J Struct Biol 130, 99108.
  • 53
    Young ID, Ailles L, Narindrasorasak S, Tan R & Kisilevsky R (1992) Localization of the basement membrane heparan sulfate proteoglycan in islet amyloid deposits in type-II diabetes-mellitus. Source 116, 951954.
  • 54
    Meng F, Abedini A, Song B & Raleigh DP (2007) Amyloid formation by pro-islet amyloid polypeptide processing intermediates: examination of the role of protein heparan sulfate interactions and implications for islet amyloid formation in type 2 diabetes. Biochemistry 46, 1209112099.
  • 55
    Hull RE, Zraika S, Udayasankar J, Kisilevsky R, Szarek WA, Wight TN & Kahn SE (2007) Inhibition of glycosaminoglycan synthesis and protein glycosylation with WAS-406 and azaserine result in reduced islet amyloid formation in vitro. Am J Physiol Cell Physiol 293, C1586C1593.
  • 56
    Sandwall E, O’Callaghan P, Zhang X, Lindahl U, Lannfelt L & Li J-P (2010) Heparan sulfate mediates amyloid-beta internalization and cytotoxicity. Glycobiology 20, 533541.
  • 57
    Li JP, Galvis ML, Gong F, Zhang X, Zcharia E, Metzger S, Vlodavsky I, Kisilevsky R & Lindahl U (2005) In vivo fragmentation of heparan sulfate by heparanase overexpression renders mice resitant to amyloid protein A amyloidosis. Proc Natl Acad Sci USA 102, 64736477.
  • 58
    Westermark P (1973) Fine structure of islets of Langerhans in insular amyloidosis. Virchows Arch Abt A Path Anat 359, 118.
  • 59
    Schwartz P (1968) New patho-anatomic observations on amyloidosis in the aged. Fluorescence microscopic investigations. In Amyloidosis (Mandema E, Ruinen L, Scholten JH & Cohen AS eds), pp. 400415. Excerpta Medica, Amsterdam.
  • 60
    Battaglia S & Trentini GP (1978) Aortenamyloidose im Erwachsenenalter. Virchows Arch A 378, 153159.
  • 61
    Cornwell GGr, Westermark P, Murdoch W & Pitkänen P (1982) Senile aortic amyloid. A third distinctive type of age-related cardiovascular amyloid. Am J Pathol 108, 135139.
  • 62
    Mucchiano G, Cornwell GGI & Westermark P (1992) Senile aortic amyloid. Evidence of two distinct forms of localized deposits. Am J Pathol 140, 871877.
  • 63
    Peng S, Westermark P, Jan Näslund J, Häggqvist B, Glennert J & Westermark P (2002) Medin and medin-amyloid in ageing inflamed and non-inflamed temporal arteries. J Pathol 196, 9196.
  • 64
    Peng S, Glennert J & Westermark P (2005) Medin-amyloid: a recently characterized age-associated arterial amyloid form affects mainly arteries in the upper part of the body. Amyloid 12, 96102.
  • 65
    Dingemans KP, Teeling P, Langendijk JH & Becker AE (2000) Extracellular matrix of the human aortic media: an ultrastructural histochemical and immunohistochemical study of the adult aortic media. Anat Rec 258, 114.
  • 66
    Häggqvist B, Näslund J, Sletten K, Westermark GT, Mucchiano G, Tjernberg LO, Nordstedt C, Engström U & Westermark P (1999) Medin: an integral fragment of aortic smooth muscle cell-produced lactadherin forms the most common human amyloid. Proc Natl Acad Sci USA 96, 86698674.
  • 67
    Stubbs JD, Lekutis C, Singer KL, Bui A, Yuzuki D, Srinivasan U & Parry G (1990) cDNA cloning of a mouse mammary epithelial cell surface protein reveals the existence of epidermal growth factor-like domains linked to factor VIII-like sequences. Proc Natl Acad Sci USA 87, 84178421.
  • 68
    Larocca D, Peterson JA, Urrea R, Kuniyoshi J, Bistrain AM & Ceriani L (1991) A mr 46,000 milk fat globule protein that is highly expressed in human breast tumors contains factor VIII-like domains. Cancer Res 51, 49944998.
  • 69
    Couto JR, Taylor MR, Godwin SG, Ceriani RL & Peterson JA (1996) Cloning and sequence analysis of human breast epithelial antigen BA46 reveals an RGD cell adhesion sequence presented on an epidermal growth factor-like domain. DNA Cell Biol 15, 281286.
  • 70
    Hanayama RM, Tanaka M, Miwa K, Shinohara A, Iwamatsu A & Nagata S (2002) Identification of a factor that links apoptotic cells to phagocytes. Nature 417, 182187.
  • 71
    Boddaert J, Kinugawa K, Lambert JC, Boukhtouche F, Zoll J, Merval R, Blanc-Brude O, Mann D, Berr C, Vilar J et al. (2007) Evidence of a role for lactadherin in Alzheimer’s disease. Am J Pathol 170, 921929.
  • 72
    Yolken RH, Peterson JA, Vonderfecht SL, Fouts ET, Midthun K & Newburg DS (1992) Human milk mucin inhibits rotavirus replication and prevents experimental gastroenteritis. J Clin Invest 90, 19841991.
  • 73
    Shi J & Gilbert GE (2003) Lactadherin inhibits enzyme complexes of blood coagulation by competing for phospholipid-binding sites. Blood 101, 26282636.
  • 74
    Andersen MH, Graversen H, Fedosov SN, Petersen TE & Rasmussen JT (2000) Functional analyses of two cellular binding domains of bovine lactadherin. Biochemistry 39, 62006206.
  • 75
    Borisenko GG, Iverson SL, Ahlberg S, Kagan VE & Fadeel B (2004) Milk fat globule epidermal growth factor 8 (MFG-8) binds to oxidized phosphatidylserine: implications for macrophage clearance of apoptotic cells. Cell Death Differ 11, 943945.
  • 76
    Ait-Oufella H, Kinugawa K, Zoll J, Simon T, Boddaert J, Heeneman S, Blanc-Brude O, Barateau V, Potteaux S, Merval R et al. (2007) Lactadherin deficinecy leads to apoptotic cell accumulation and acclerated atherosclerosis in mice. Circulation 115, 21682177.
  • 77
    Véron P, Segura E, Sugano G, Amigorena S & Théry C (2005) Accumulation of MFG-E8/lactadherin on exosomes from immature dendritic cells. Blood Cell Mol Dis 35, 8188.
  • 78
    Lin L, Huai Q, Huang M, Furie B & Furie BC (2007) Crystal structure of the bovine lactadherin C2 domain, a membrane binding motif, shows similarity to the C2 domains of factor V and factor VIII. J Mol Biol 371, 717724.
  • 79
    Shao C, Novakovic VA, Head JF, Seaton BA & Gilbert GE (2008) Crystal structure of lactadherin C2 domain at 1.7 Å resolution with mutational and computational analyses of its membrane-binding motif. J Biol Chem 283, 72307241.
  • 80
    Novakovic VA, Cullinan DB, Wakabayashi H, Fay PJ, Baleja JD & Gilbert GE (2011) Membrane-binding properties of the factor VIII C2 domain. Biochem J 435, 187196.
  • 81
    Larsson A, Peng S, Persson H, Rosenbloom J, Abrams WR, Wassberg E, Thelin S, Sletten K, Gerwins P & Westermark P (2006) Lactadherin binds to elastin – a starting point for medin amyloid formation? Amyloid 13, 7885.
  • 82
    Yanagisawa H, Davis EC, Starcher BC, Ouchi T, Yanagisawa M, Richardson JA & Olson EN (2002) Fibulin-5 is an elastin-binding protein essential for elastic fibre development in vivo. Nature 415, 168171.
  • 83
    Nakamura T, Lozano PR, Ikeda Y, Iwanaga Y, Hinek A, Minamisawa S, Cheng CF, Kobuke K, Dalton N, Takada Y et al. (2002) Fibulin-5/DANCE is essential for elastogenesis in vivo. Nature 415, 171175.
  • 84
    Midwood KS & Schwarzbauer JE (2002) Elastic fibers: building bridges between cells and their matrix. Curr Biol 12, R279R281.
  • 85
    Larsson A, Söderberg L, Westermark GT, Sletten K, Engström U, Tjernberg LO, Näslund J & Westermark P (2007) Unwinding fibril formation of medin, the peptide of the most common form of human amyloid. Biochem Biophys Res Commun 361, 822828.
  • 86
    Olofsson A, Borowik T, Groöbner G & Sauer-Eriksson AE (2007) Negatively charged phospholipid membranes induce amyloid formation of medin via an α-helical intermediate. J Mol Biol 374, 186194.
  • 87
    Abedini A & Raleigh DP (2009) A role for helical intermediates in amyloid formation by natively unfolded polypeptides? Phys Biol 6, 15005.
  • 88
    Madine J & Middleton DA (2010) Comparison of aggregation enhancement and inhibition as strategies for reducing the cytotoxicity of the aortic amyloid polypeptide medin. Eur Biophys J 39, 12811288.
  • 89
    Frank R (2002) The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports - principles and applications. J Immunol Methods 267, 1326.
  • 90
    Fernandez-Escamilla AM, Rosseau F, Schymkowitz J & Serrano L (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 22, 13021306.
  • 91
    Goldschmidt L, Teng PK, Riek R & Eisenberg D (2010) Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc Natl Acad Sci USA 107, 34873492.
  • 92
    Gazit E, della Brunna P, Pieraccini S & Colombo G (2007) The molecular dynamics of assembly of the ubiquitous aortic medial amyloidal medin fragment. J Mol Graph Model 25, 903911.
  • 93
    O’Nuallian B, Williams AD, Westermark P & Wetzel R (2004) Seeding specificity in amyloid growth induced by heterologous fibrils. J Biol Chem 279, 1749017499.
  • 94
    Reches M & Gazit E (2004) Amyloidogenic hexapeptide fragment of medin: homology to functional islet amyloid polypeptide fragments. Amyloid 11, 8189.
  • 95
    Muckle TJ (1988) Giant cell inflammation compared with amyloidosis of the internal elastic lamina in temporal arteries. Arthritis Rheum 31, 11861189.
  • 96
    Nuenninghoff DM, Hunder GG, Christianson TJH, McClelland RL & Matteson EL (2003) Incidence and predictors of large-artery complication (aortic aneurysm, aortic dissection, and/or large-artery stenosis) in patients with giant cell arteritis. Arhtritis Rheum 48, 35223531.
  • 97
    Homme JL, Aubry M-C, Edwards WD, Bagniewski SM, Pankratz VS, Kral CA & Tazelaar HD (2006) Surgical pathology of the ascending aorta: a clinicopathlogic study of 513 cases. Am J Surg Pathol 30, 11591168.
  • 98
    Lee A, Luk A, Phillips KR, Lim KD, David TE & Butany J (2011) Giant cell aortitis: a difficult diagnosis assessing risk for the development of aneurysms and dissections. Cardiovasc Pathol 20, 247253.
  • 99
    Scolding NJ, Joseph F, Kirby PA, Mazanti I, Gray F, Mikol J, Ellison D, Hilton DA, Williams TL, MacKenzie JM et al. (2005) Aβ-related angiitis: primary angiitis of the central nervous system associated with cerebral amyloid angiopathy. Brain 128, 500515.
  • 100
    Winkler DT, Bondolfi L, Herzig MC, Jann L, Calhoun ME, Wiederhold KH, Tolnay M, Staufenbiel M & Jucker M (2001) Spontaneous hemorrhagic stroke in a mouse model of cerebral amyloid angiopathy. J Neurosci 21, 16191627.
  • 101
    Peng S, Larsson A, Wassberg E, Gerwins P, Thelin S, Fu X & Westermark P (2007) Role of aggregated medin in the pathogenesis of thoracic aortic aneurysm and dissection. Lab Invest 87, 11951205.
  • 102
    Dingemans KP, Teeling P, van der Wal AC & Becker AE (2006) Ultrastructural pathology of aortic dissection in patients with Marfan syndrome: comparison with dissections in patients without Marfan syndrome. Cardiovasc Pathol 15, 203212.