• 1
    Perlman D & Bodanszky M (1971) Biosynthesis of peptide antibiotics. Annu Rev Biochem 40, 449464.
  • 2
    Kiss G & Michl H (1962) Uber das Giftsekret der Gelbbauchunke, Bombina variegata L. Toxicon 1, 3334.
  • 3
    Csordas A & Michl H (1969) Primary structure of two oligopeptides of the toxin of Bombina variegata L. Toxicon 7, 103108.
  • 4
    Hultmark D, Steiner H, Rasmuson T & Boman HG (1980) Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur J Biochem 106, 716.
  • 5
    Patterson-Delafield J, Szklarek D, Martinez RJ & Lehrer RI (1981) Microbicidal cationic proteins of rabbit alveolar macrophages: amino acid composition and functional attributes. Infect Immun 31, 723731.
  • 6
    Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3, 710720.
  • 7
    Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 84, 54495453.
  • 8
    Cowland JB, Johnsen AH & Borregaard N (1995) hCAP-18, a cathelin/pro-bactenecin-like protein of human neutrophil specific granules. FEBS Lett 368, 173176.
  • 9
    Larrick JW, Hirata M, Zhong J & Wright SC (1995) Anti-microbial activity of human CAP18 peptides. Immunotechnology 1, 6572.
  • 10
    Agerberth B, Gunne H, Odeberg J, Kogner P, Boman HG & Gudmundsson GH (1995) FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc Natl Acad Sci USA 92, 195199.
  • 11
    Fehlbaum P, Bulet P, Michaut L, Lagueux M, Broekaert WF, Hetru C & Hoffmann JA (1994) Insect immunity. Septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. J Biol Chem 269, 3315933163.
  • 12
    Florack DE & Stiekema WJ (1994) Thionins: properties, possible biological roles and mechanisms of action. Plant Mol Biol 26, 2537.
  • 13
    Mygind PH, Fischer RL, Schnorr KM, Hansen MT, Sonksen CP, Ludvigsen S, Raventos D, Buskov S, Christensen B, De Maria L et al. (2005) Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437, 975980.
  • 14
    Wang Z & Wang G (2004) APD: the Antimicrobial Peptide Database. Nucleic Acids Res 32, D590D592.
  • 15
    Yeaman MR & Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55, 2755.
  • 16
    Zhu S (2008) Discovery of six families of fungal defensin-like peptides provides insights into origin and evolution of the CSalphabeta defensins. Mol Immunol 45, 828838.
  • 17
    Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF & Lehrer RI (1985) Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest 76, 14271435.
  • 18
    Lehrer RI, Barton A, Daher KA, Harwig SS, Ganz T & Selsted ME (1989) Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J Clin Invest 84, 553561.
  • 19
    Wimley WC, Selsted ME & White SH (1994) Interactions between human defensins and lipid bilayers: evidence for formation of multimeric pores. Protein Sci 3, 13621373.
  • 20
    Schneider T, Kruse T, Wimmer R, Wiedemann I, Sass V, Pag U, Jansen A, Nielsen AK, Mygind PH, Raventos DS et al. (2010) Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. Science 328, 11681172.
  • 21
    Sass V, Schneider T, Wilmes M, Korner C, Tossi A, Novikova N, Shamova O & Sahl HG (2010) Human beta-defensin 3 inhibits cell wall biosynthesis in Staphylococci. Infect Immun 78, 27932800.
  • 22
    Oppenheim JJ, Biragyn A, Kwak LW & Yang D (2003) Roles of antimicrobial peptides such as defensins in innate and adaptive immunity. Ann Rheum Dis 62(Suppl 2), ii17ii21.
  • 23
    Soehnlein O, Kai-Larsen Y, Frithiof R, Sorensen OE, Kenne E, Scharffetter-Kochanek K, Eriksson EE, Herwald H, Agerberth B & Lindbom L (2008) Neutrophil primary granule proteins HBP and HNP1-3 boost bacterial phagocytosis by human and murine macrophages. J Clin Invest 118, 34913502.
  • 24
    Maemoto A, Qu X, Rosengren KJ, Tanabe H, Henschen-Edman A, Craik DJ & Ouellette AJ (2004) Functional analysis of the alpha-defensin disulfide array in mouse cryptdin-4. J Biol Chem 279, 4418844196.
  • 25
    Schroeder BO, Wu Z, Nuding S, Groscurth S, Marcinowski M, Beisner J, Buchner J, Schaller M, Stange EF & Wehkamp J (2011) Reduction of disulphide bonds unmasks potent antimicrobial activity of human beta-defensin 1. Nature 469, 419423.
  • 26
    White SH, Wimley WC & Selsted ME (1995) Structure, function, and membrane integration of defensins. Curr Opin Struct Biol 5, 521527.
  • 27
    Tang YQ, Yuan J, Osapay G, Osapay K, Tran D, Miller CJ, Ouellette AJ & Selsted ME (1999) A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science 286, 498502.
  • 28
    Xiao Y, Hughes AL, Ando J, Matsuda Y, Cheng JF, Skinner-Noble D & Zhang G (2004) A genome-wide screen identifies a single beta-defensin gene cluster in the chicken: implications for the origin and evolution of mammalian defensins. BMC Genomics 5, 56.
  • 29
    Lehrer RI (2004) Primate defensins. Nat Rev Microbiol 2, 727738.
  • 30
    Patil AA, Cai Y, Sang Y, Blecha F & Zhang G (2005) Cross-species analysis of the mammalian beta-defensin gene family: presence of syntenic gene clusters and preferential expression in the male reproductive tract. Physiol Genomics 23, 517.
  • 31
    Patil A, Hughes AL & Zhang G (2004) Rapid evolution and diversification of mammalian alpha-defensins as revealed by comparative analysis of rodent and primate genes. Physiol Genomics 20, 111.
  • 32
    Belov K, Sanderson CE, Deakin JE, Wong ES, Assange D, McColl KA, Gout A, de Bono B, Barrow AD, Speed TP et al. (2007) Characterization of the opossum immune genome provides insights into the evolution of the mammalian immune system. Genome Res 17, 982991.
  • 33
    Lynn DJ & Bradley DG (2007) Discovery of alpha-defensins in basal mammals. Dev Comp Immunol 31, 963967.
  • 34
    Harwig SS, Park AS & Lehrer RI (1992) Characterization of defensin precursors in mature human neutrophils. Blood 79, 15321537.
  • 35
    Linzmeier R, Ho CH, Hoang BV & Ganz T (1999) A 450-kb contig of defensin genes on human chromosome 8p23. Gene 233, 205211.
  • 36
    Wilde CG, Griffith JE, Marra MN, Snable JL & Scott RW (1989) Purification and characterization of human neutrophil peptide 4, a novel member of the defensin family. J Biol Chem 264, 1120011203.
  • 37
    Sengelov H, Follin P, Kjeldsen L, Lollike K, Dahlgren C & Borregaard N (1995) Mobilization of granules and secretory vesicles during in vivo exudation of human neutrophils. J Immunol 154, 41574165.
  • 38
    Jones DE & Bevins CL (1992) Paneth cells of the human small intestine express an antimicrobial peptide gene. J Biol Chem 267, 2321623225.
  • 39
    Jones DE & Bevins CL (1993) Defensin-6 mRNA in human Paneth cells: implications for antimicrobial peptides in host defense of the human bowel. FEBS Lett 315, 187192.
  • 40
    Wehkamp J, Harder J, Weichenthal M, Schwab M, Schaffeler E, Schlee M, Herrlinger KR, Stallmach A, Noack F, Fritz P et al. (2004) NOD2 (CARD15) mutations in Crohn’s disease are associated with diminished mucosal alpha-defensin expression. Gut 53, 16581664.
  • 41
    Frye M, Bargon J, Lembcke B, Wagner TO & Gropp R (2000) Differential expression of human alpha- and beta-defensins mRNA in gastrointestinal epithelia. Eur J Clin Invest 30, 695701.
  • 42
    Wehkamp J, Wang G, Kubler I, Nuding S, Gregorieff A, Schnabel A, Kays RJ, Fellermann K, Burk O, Schwab M et al. (2007) The Paneth cell alpha-defensin deficiency of ileal Crohn’s disease is linked to Wnt/Tcf-4. J Immunol 179, 31093118.
  • 43
    Nishimura M, Abiko Y, Kurashige Y, Takeshima M, Yamazaki M, Kusano K, Saitoh M, Nakashima K, Inoue T & Kaku T (2004) Effect of defensin peptides on eukaryotic cells: primary epithelial cells, fibroblasts and squamous cell carcinoma cell lines. J Dermatol Sci 36, 8795.
  • 44
    Territo MC, Ganz T, Selsted ME & Lehrer R (1989) Monocyte-chemotactic activity of defensins from human neutrophils. J Clin Invest 84, 20172020.
  • 45
    Belcourt D, Singh A, Bateman A, Lazure C, Solomon S & Bennett HP (1992) Purification of cationic cystine-rich peptides from rat bone marrow. Primary structures and biological activity of the rat corticostatin family of peptides. Regul Pept 40, 87100.
  • 46
    Befus AD, Mowat C, Gilchrist M, Hu J, Solomon S & Bateman A (1999) Neutrophil defensins induce histamine secretion from mast cells: mechanisms of action. J Immunol 163, 947953.
  • 47
    Schutte BC, Mitros JP, Bartlett JA, Walters JD, Jia HP, Welsh MJ, Casavant TL & McCray PB Jr (2002) Discovery of five conserved beta-defensin gene clusters using a computational search strategy. Proc Natl Acad Sci USA 99, 21292133.
  • 48
    Ganz T & Lehrer RI (1998) Antimicrobial peptides of vertebrates. Curr Opin Immunol 10, 4144.
  • 49
    O’Neil DA, Porter EM, Elewaut D, Anderson GM, Eckmann L, Ganz T & Kagnoff MF (1999) Expression and regulation of the human beta-defensins hBD-1 and hBD-2 in intestinal epithelium. J Immunol 163, 67186724.
  • 50
    Menzies BE & Kenoyer A (2005) Staphylococcus aureus infection of epidermal keratinocytes promotes expression of innate antimicrobial peptides. Infect Immun 73, 52415244.
  • 51
    Wehkamp K, Schwichtenberg L, Schroder JM & Harder J (2006) Pseudomonas aeruginosa- and IL-1beta-mediated induction of human beta-defensin-2 in keratinocytes is controlled by NF-kappaB and AP-1. J Invest Dermatol 126, 121127.
  • 52
    Zanger P, Holzer J, Schleucher R, Scherbaum H, Schittek B & Gabrysch S (2010) Severity of Staphylococcus aureus infection of the skin is associated with inducibility of human beta-defensin 3 but not human beta-defensin 2. Infect Immun 78, 31123117.
  • 53
    Zhu S (2008) Did cathelicidins, a family of multifunctional host-defense peptides, arise from a cysteine protease inhibitor? Trends Microbiol 16, 353360.
  • 54
    Zaiou M, Nizet V & Gallo RL (2003) Antimicrobial and protease inhibitory functions of the human cathelicidin (hCAP18/LL-37) prosequence. J Invest Dermatol 120, 810816.
  • 55
    Gennaro R & Zanetti M (2000) Structural features and biological activities of the cathelicidin-derived antimicrobial peptides. Biopolymers 55, 3149.
  • 56
    Tomasinsig L & Zanetti M (2005) The cathelicidins – structure, function and evolution. Curr Protein Pept Sci 6, 2334.
  • 57
    Agerberth B, Charo J, Werr J, Olsson B, Idali F, Lindbom L, Kiessling R, Jornvall H, Wigzell H & Gudmundsson GH (2000) The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood 96, 30863093.
  • 58
    Niyonsaba F, Iwabuchi K, Someya A, Hirata M, Matsuda H, Ogawa H & Nagaoka I (2002) A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. Immunology 106, 2026.
  • 59
    Wang G (2008) Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J Biol Chem 283, 3263732643.
  • 60
    Johansson J, Gudmundsson GH, Rottenberg ME, Berndt KD & Agerberth B (1998) Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J Biol Chem 273, 37183724.
  • 61
    Sochacki KA, Barns KJ, Bucki R & Weisshaar JC (2011) Real-time attack on single Escherichia coli cells by the human antimicrobial peptide LL-37. Proc Natl Acad Sci USA 108, E77E81.
  • 62
    Sorensen OE, Follin P, Johnsen AH, Calafat J, Tjabringa GS, Hiemstra PS & Borregaard N (2001) Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97, 39513959.
  • 63
    Sorensen OE, Gram L, Johnsen AH, Andersson E, Bangsboll S, Tjabringa GS, Hiemstra PS, Malm J, Egesten A & Borregaard N (2003) Processing of seminal plasma hCAP-18 to ALL-38 by gastricsin: a novel mechanism of generating antimicrobial peptides in vagina. J Biol Chem 278, 2854028546.
  • 64
    Yamasaki K, Schauber J, Coda A, Lin H, Dorschner RA, Schechter NM, Bonnart C, Descargues P, Hovnanian A & Gallo RL (2006) Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. FASEB J 20, 20682080.
  • 65
    Murakami M, Lopez-Garcia B, Braff M, Dorschner RA & Gallo RL (2004) Postsecretory processing generates multiple cathelicidins for enhanced topical antimicrobial defense. J Immunol 172, 30703077.
  • 66
    Kai-Larsen Y & Agerberth B (2008) The role of the multifunctional peptide LL-37 in host defense. Front Biosci 13, 37603767.
  • 67
    Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA, Pestonjamasp V, Piraino J, Huttner K & Gallo RL (2001) Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414, 454457.
  • 68
    Howell MD, Jones JF, Kisich KO, Streib JE, Gallo RL & Leung DY (2004) Selective killing of vaccinia virus by LL-37: implications for eczema vaccinatum. J Immunol 172, 17631767.
  • 69
    Heilborn JD, Nilsson MF, Kratz G, Weber G, Sorensen O, Borregaard N & Stahle-Backdahl M (2003) The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J Invest Dermatol 120, 379389.
  • 70
    Koczulla R, von Degenfeld G, Kupatt C, Krotz F, Zahler S, Gloe T, Issbrucker K, Unterberger P, Zaiou M, Lebherz C et al. (2003) An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 111, 16651672.
  • 71
    De Y, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, Oppenheim JJ & Chertov O (2000) LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 192, 10691074.
  • 72
    Wan M, Godson C, Guiry PJ, Agerberth B & Haeggstrom JZ (2011) Leukotriene B4/antimicrobial peptide LL-37 proinflammatory circuits are mediated by BLT1 and FPR2/ALX and are counterregulated by lipoxin A4 and resolvin E1. FASEB J 25, 16971705.
  • 73
    Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B, Cao W, Su B, Nestle FO, Zal T et al. (2007) Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449, 564569.
  • 74
    Gilliet M & Lande R (2008) Antimicrobial peptides and self-DNA in autoimmune skin inflammation. Curr Opin Immunol 20, 401407.
  • 75
    Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C, Gregorio J, Meller S, Chamilos G, Sebasigari R, Riccieri V et al. (2011) Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med 3, 73ra19.
  • 76
    Golec M (2007) Cathelicidin LL-37: LPS-neutralizing, pleiotropic peptide. Ann Agric Environ Med 14, 14.
  • 77
    Frohm M, Agerberth B, Ahangari G, Stahle-Backdahl M, Liden S, Wigzell H & Gudmundsson GH (1997) The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 272, 1525815263.
  • 78
    Chen CI, Schaller-Bals S, Paul KP, Wahn U & Bals R (2004) Beta-defensins and LL-37 in bronchoalveolar lavage fluid of patients with cystic fibrosis. J Cyst Fibros 3, 4550.
  • 79
    Sun CL, Zhang FZ, Li P & Bi LQ (2011) LL-37 expression in the skin in systemic lupus erythematosus. Lupus 20, 904911.
  • 80
    Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, Gallo RL & Leung DY (2002) Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 347, 11511160.
  • 81
    Islam D, Bandholtz L, Nilsson J, Wigzell H, Christensson B, Agerberth B & Gudmundsson G (2001) Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator. Nat Med 7, 180185.
  • 82
    Chakraborty K, Ghosh S, Koley H, Mukhopadhyay AK, Ramamurthy T, Saha DR, Mukhopadhyay D, Roychowdhury S, Hamabata T, Takeda Y et al. (2008) Bacterial exotoxins downregulate cathelicidin (hCAP-18/LL-37) and human beta-defensin 1 (HBD-1) expression in the intestinal epithelial cells. Cell Microbiol 10, 25202537.
  • 83
    Termen S, Tollin M, Rodriguez E, Sveinsdottir SH, Johannesson B, Cederlund A, Sjovall J, Agerberth B & Gudmundsson GH (2008) PU.1 and bacterial metabolites regulate the human gene CAMP encoding antimicrobial peptide LL-37 in colon epithelial cells. Mol Immunol 45, 39473955.
  • 84
    Hase K, Eckmann L, Leopard JD, Varki N & Kagnoff MF (2002) Cell differentiation is a key determinant of cathelicidin LL-37/human cationic antimicrobial protein 18 expression by human colon epithelium. Infect Immun 70, 953963.
  • 85
    Schauber J, Svanholm C, Termen S, Iffland K, Menzel T, Scheppach W, Melcher R, Agerberth B, Luhrs H & Gudmundsson GH (2003) Expression of the cathelicidin LL-37 is modulated by short chain fatty acids in colonocytes: relevance of signalling pathways. Gut 52, 735741.
  • 86
    Raqib R, Sarker P, Bergman P, Ara G, Lindh M, Sack DA, Nasirul Islam KM, Gudmundsson GH, Andersson J & Agerberth B (2006) Improved outcome in shigellosis associated with butyrate induction of an endogenous peptide antibiotic. Proc Natl Acad Sci USA 103, 91789183.
  • 87
    Steinmann J, Halldorsson S, Agerberth B & Gudmundsson GH (2009) Phenylbutyrate induces antimicrobial peptide expression. Antimicrob Agents Chemother 53, 51275133.
  • 88
    Sarker P, Ahmed S, Tiash S, Rekha RS, Stromberg R, Andersson J, Bergman P, Gudmundsson GH, Agerberth B & Raqib R (2011) Phenylbutyrate counteracts Shigella mediated downregulation of cathelicidin in rabbit lung and intestinal epithelia: a potential therapeutic strategy. PLoS ONE 6, e20637.
  • 89
    Sorensen OE, Cowland JB, Theilgaard-Monch K, Liu L, Ganz T & Borregaard N (2003) Wound healing and expression of antimicrobial peptides/polypeptides in human keratinocytes, a consequence of common growth factors. J Immunol 170, 55835589.
  • 90
    Wang TT, Nestel FP, Bourdeau V, Nagai Y, Wang Q, Liao J, Tavera-Mendoza L, Lin R, Hanrahan JW, Mader S et al. (2004) Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol 173, 29092912.
  • 91
    Gombart AF, Borregaard N & Koeffler HP (2005) Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J 19, 10671077.
  • 92
    Weber G, Heilborn JD, Chamorro Jimenez CI, Hammarsjo A, Torma H & Stahle M (2005) Vitamin D induces the antimicrobial protein hCAP18 in human skin. J Invest Dermatol 124, 10801082.
  • 93
    Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, Ochoa MT, Schauber J, Wu K, Meinken C et al. (2006) Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311, 17701773.
  • 94
    Martineau AR, Timms PM, Bothamley GH, Hanifa Y, Islam K, Claxton AP, Packe GE, Moore-Gillon JC, Darmalingam M, Davidson RN et al. (2011) High-dose vitamin D(3) during intensive-phase antimicrobial treatment of pulmonary tuberculosis: a double-blind randomised controlled trial. Lancet 377, 242250.