SEARCH

SEARCH BY CITATION

References

  • 1
    Bormann C, Mattern S, Schrempf H, Fiedler HP & Zahner H (1989) Isolation of Streptomyces tendae mutants with an altered nikkomycin spectrum. J Antibiot (Tokyo) 42, 913918.
  • 2
    Chen H, Hubbard BK, O’Connor SE & Walsh CT (2002) Formation of beta-hydroxy histidine in the biosynthesis of nikkomycin antibiotics. Chem Biol 9, 103112.
  • 3
    Pan YY, Wang LQ, He XH, Tian YQ, Liu G & Tan HR (2011) SabR enhances nikkomycin production via regulating the transcriptional level of sanG, a pathway-specific regulatory gene in Streptomyces ansochromogenes. BMC Microbiol 11, 164174.
  • 4
    Ling HB, Wang GJ, Tian YQ, Liu G & Tan HR (2007) SanM catalyzes the formation of 4-pyridyl-2-oxo-4-hydroxyisovalerate in nikkomycin biosynthesis by interacting with SanN. Biochem Biophys Res Commun 361, 196201.
  • 5
    Kim MK, Park HS, Kim CH, Park HM & Choi W (2002) Inhibitory effect of nikkomycin Z on chitin synthases in Candida albicans. Yeast 19, 341349.
  • 6
    Brillinger GU (1979) Metabolic products of microorganisms. 181. Chitin synthase from fungi, a test model for substances with insecticidal properties. Arch Microbiol 121, 7174.
  • 7
    Hector RF (1993) Compounds active against cell walls of medically important fungi. Clin Microbiol Rev 6, 121.
  • 8
    Dähn U, Hagenmaier H, Höhne H, König WA, Wolf G & Zähner H (1976) Stoffwechselprodukte von Mikroorganismen. 154. Mitteilung. Nikkomycin, ein neuer Hemmstoff der Chitinsynthese bei Pilzen. Arch Microbiol 107, 143160.
  • 9
    Decker H, Zähner H, Heitsch H, König WA & Fiedler HP (1991) Structure-activity relationships of the nikkomycins. J Gen Microbiol 137, 18051813.
  • 10
    Bruntner C, Lauer B, Schwarz W, Möhrle V & Bormann C (1999) Molecular characterization of co-transcribed genes from Streptomyces tendae Tü901 involved in the biosynthesis of the peptidyl moiety of the peptidyl nucleoside antibiotic nikkomycin. Mol Gen Genet 262, 102114.
  • 11
    Niu G, Liu G, Tian Y & Tan H (2006) SanJ, an ATP-dependent picolinate-CoA ligase, catalyzes the conversion of picolinate to picolinate-CoA during nikkomycin biosynthesis in Streptomyces ansochromogenes. Metab Eng 8, 183195.
  • 12
    Liao G, Li J, Li L, Yang H, Tian Y & Tan H (2009) Selectively improving nikkomycin Z production by blocking the imidazolone biosynthetic pathway of nikkomycin X and uracil feeding in Streptomyces ansochromogenes. Microb Cell Fact 8, 61.
  • 13
    Bormann C (2002) Biosynthesis of the peptidyl nucleoside antibiotic nikkomycin in Streptomyces tendae Tü901 deduced from the analysis of the gene cluster and mutational studies. In Microbial Secondary Metabolites: Biosynthesis, Genetics and Regulation (Fierro F & Martin JF eds), pp. 4361. Kerala, India.
  • 14
    Bruntner C & Bormann C (1998) The Streptomyces tendae Tu901 L-lysine 2-aminotransferase catalyzes the initial reaction in nikkomycin D biosynthesis. Eur J Biochem 254, 347355.
  • 15
    Bruckner RC, Zhao G, Venci D & Jorns MS (2004) Nikkomycin biosynthesis: formation of a 4-electron oxidation product during turnover of NikD with its physiological substrate. Biochemistry 43, 91609167.
  • 16
    Ling HB, Wang GJ, Li JE & Tan HR (2008) sanN encoding a dehydrogenase is essential for Nikkomycin biosynthesis in Streptomyces ansochromogenes. J Microbiol Biotechnol 18, 397403.
  • 17
    Jia L, Tian Y & Tan H (2007) SanT, a bidomain protein, is essential for nikkomycin biosynthesis of Streptomyces ansochromogenes. Biochem Biophys Res Commun 362, 10311036.
  • 18
    Li Y, Ling H, Li W & Tan H (2005) Improvement of nikkomycin production by enhanced copy of sanU and sanV in Streptomyces ansochromogenes and characterization of a novel glutamate mutase encoded by sanU and sanV. Metab Eng 7, 165173.
  • 19
    Ginj C, Ruegger H, Amrhein N & Macheroux P (2005) 3′-Enolpyruvyl-UMP, a novel and unexpected metabolite in nikkomycin biosynthesis. Chembiochem 6, 19741976.
  • 20
    Lauer B, Süssmuth R, Kaiser D, Jung G & Bormann C (2000) A putative enolpyruvyl transferase gene involved in nikkomycin biosynthesis. J Antibiot (Tokyo) 53, 385392.
  • 21
    Dolzan M, Johansson K, Roig-Zamboni V, Campanacci V, Tegoni M, Schneider G & Cambillau C (2004) Crystal structure and reactivity of YbdL from Escherichia coli identify a methionine aminotransferase function. FEBS Lett 571, 141146.
  • 22
    Haruyama K, Nakai T, Miyahara I, Hirotsu K, Mizuguchi H, Hayashi H & Kagamiyama H (2001) Structures of Escherichia coli histidinol-phosphate aminotransferase and its complexes with histidinol-phosphate and N-(5′-phosphopyridoxyl)-L-glutamate: double substrate recognition of the enzyme. Biochemistry 40, 46334644.
  • 23
    Jensen RA & Gu W (1996) Evolutionary recruitment of biochemically specialized subdivisions of family I within the protein superfamily of aminotransferases. J Bacteriol 178, 21612171.
  • 24
    Sivaraman J, Li Y, Larocque R, Schrag JD, Cygler M & Matte A (2001) Crystal structure of histidinol phosphate aminotransferase (HisC) from Escherichia coli, and its covalent complex with pyridoxal-5′-phosphate and l-histidinol phosphate. J Mol Biol 311, 761776.
  • 25
    Cheong CG, Escalante-Semerena JC & Rayment I (2002) Structural studies of the L-threonine-O-3-phosphate decarboxylase (CobD) enzyme from Salmonella enterica: the apo, substrate, and product-aldimine complexes. Biochemistry 41, 90799089.
  • 26
    Kirsch JF, Eichele G, Ford GC, Vincent MG, Jansonius JN, Gehring H & Christen P (1984) Mechanism of action of aspartate aminotransferase proposed on the basis of its spatial structure. J Mol Biol 174, 497525.
  • 27
    Smith DL, Almo SC, Toney MD & Ringe D (1989) 2.8-A-resolution crystal structure of an active-site mutant of aspartate aminotransferase from Escherichia coli. Biochemistry 28, 81618167.
  • 28
    Ura H, Nakai T, Kawaguchi SI, Miyahara I, Hirotsu K & Kuramitsu S (2001) Substrate recognition mechanism of thermophilic dual-substrate enzyme. J Biochem 130, 8998.
  • 29
    Mehta PK & Christen P (2000) The molecular evolution of pyridoxal-5′-phosphate-dependent enzymes. Adv Enzymol Relat Areas Mol Biol 74, 129184.
  • 30
    Li WL, Jia JY, Tan HR, Hu YS & Wang ZY (2000) Cloning, sequencing and function of sanB, a gene related to nikkomycin biosynthesis of Streptomyces ansochromogenes. Chin Sci Bull 45, 21582162.
  • 31
    Hayashi H, Mizuguchi H & Kagamiyama H (1998) The imine-pyridine torsion of the pyridoxal 5′-phosphate Schiff base of aspartate aminotransferase lowers its pKa in the unliganded enzyme and is crucial for the successive increase in the pKa during catalysis. Biochemistry 37, 1507615085.
  • 32
    Mizuguchi H, Hayashi H, Okada K, Miyahara I, Hirotsu K & Kagamiyama H (2001) Strain is more important than electrostatic interaction in controlling the pKa of the catalytic group in aspartate aminotransferase. Biochemistry 40, 353360.
  • 33
    Hosono A, Mizuguchi H, Hayashi H, Goto M, Miyahara I, Hirotsu K & Kagamiyama H (2003) Glutamine:phenylpyruvate aminotransferase from an extremely thermophilic bacterium, Thermus thermophilus HB8. J Biochem 134, 843851.
  • 34
    Eliot AC & Kirsch JF (2004) Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu Rev Biochem 73, 383415.
  • 35
    Karsten WE, Ohshiro T, Izumi Y & Cook PF (2001) Initial velocity, spectral, and pH studies of the serine-glyoxylate aminotransferase from Hyphomicrobium methylovorum. Arch Biochem Biophys 388, 267275.
  • 36
    Karsten WE, Ohshiro T, Izumi Y & Cook PF (2005) Reaction of serine-glyoxylate aminotransferase with the alternative substrate ketomalonate indicates rate-limiting protonation of a quinonoid intermediate. Biochemistry 44, 1593015936.
  • 37
    Johnson GF, Tu JI, Bartlett ML & Graves DJ (1970) Physical-chemical studies on the pyridoxal phosphate binding site in sodium borohydride-reduced and native phosphorylase. J Biol Chem 245, 55605568.
  • 38
    Schonbeck ND, Skalski M & Shafer JA (1975) Reactions of pyridoxal 5′-phosphate, 6-aminocaproic acid, cysteine, and penicillamine. Models for reactions of Schiff base linkages in pyridoxal 5′-phosphate-requiring enymes. J Biol Chem 250, 53435351.
  • 39
    Reitman S & Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28, 5663.
  • 40
    Vedavathi M, Girish KS & Kumar MK (2004) Isolation and characterization of cytosolic alanine aminotransferase isoforms from starved rat liver. Mol Cell Biochem 267, 1323.
  • 41
    Krieger E, Darden T, Nabuurs SB, Finkelstein A & Vriend G (2004) Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins 57, 678683.
  • 42
    Krieger E, Joo K, Lee J, Lee J, Raman S, Thompson J, Tyka M, Baker D & Karplus K (2009) Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: four approaches that performed well in CASP8. Proteins 77, 114122.
  • 43
    Söding J, Biegert A & Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33, W244W248.
  • 44
    Söding J (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21, 951960.
  • 45
    Sali A & Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234, 779815.
  • 46
    Duan Y, Wu C, Chowdhury S, Lee MC, Xiong GM, Zhang W, Yang R, Cieplak P, Luo R, Lee T et al. (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24, 19992012.
  • 47
    Wang J, Wolf RM, Caldwell JW, Kollman PA & Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25, 11571174.
  • 48
    Essmann U, Perera L, Berkowitz ML, Darden T, Lee H & Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103, 85778593.
  • 49
    Jorgensen WL & Tirado-Rives J (1988) The OPLS force field for proteins. Energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110, 16571666.
  • 50
    Jorgensen WL, Maxwell DS & Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118, 1122512236.
  • 51
    Case DA, Darden TA III, Simmerling CL, Wang J, Duke RE, Luo R, Walker KM, Zhang RC, Merz W, Pearlman DA et al. (2010) AMBER 11. University of California, San Francisco, http://ambermd.org/#Amber11 .