• 1
    Barbier-Brygoo H, Vinauger M, Colcombet J, Ephritikhine G, Frachisse J & Maurel C (2000) Anion channels in higher plants: functional characterization, molecular structure and physiological role. Biochim Biophys Acta 1465, 199218.
  • 2
    Neher E & Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 799802.
  • 3
    Dutzler R, Campbell EB, Cadene M, Chait BT & MacKinnon R (2002) X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415, 287294.
  • 4
    AGI (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796815.
  • 5
    Hille B (1996) Ionic channels of excitable membranes, second edition. Sinauer Associates Inc., Sunderland MA, USA.
  • 6
    De Angeli A, Monachello D, Ephritikhine G, Frachisse JM, Thomine S, Gambale F & Barbier-Brygoo H (2006) The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature 442, 939942.
  • 7
    Emmerlich V, Linka N, Reinhold T, Hurth MA, Traub M, Martinoia E & Neuhaus HE (2003) The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier. Proc Natl Acad Sci USA 100, 1112211126.
  • 8
    Roelfsema MR, Levchenko V & Hedrich R (2004) ABA depolarizes guard cells in intact plants, through a transient activation of R- and S-type anion channels. Plant J 37, 578588.
  • 9
    Schroeder JI (1995) Anion channels as central mechanisms for signal transduction in guard cells and putative functions in roots for plant–soil interactions. Plant Mol Biol 28, 353361.
  • 10
    Garrill A, Tyerman SD & Findlay GP (1994) Ion channels in the plasma membrane of protoplasts from the halophytic angiosperm Zostera muelleri. J Membr Biol 142, 381393.
  • 11
    Jossier M, Kroniewicz L, Dalmas F, Le Thiec D, Ephritikhine G, Thomine S, Barbier-Brygoo H, Filleur S & Leonhardt N (2010) The Arabidopsis vacuolar anion transporter, AtCLCc, is involved in the regulation of stomatal movements and contributes to salt tolerance. Plant J 64, 563576.
  • 12
    Meyer S, De Angeli A, Fernie AR & Martinoia E (2010) Intra- and extra-cellular excretion of carboxylates. Trends Plant Sci 15, 4047.
  • 13
    Hedrich R, Busch H & Raschke K (1990) Ca2+ and nucleotide dependent regulation of voltage dependent anion channels in the plasma membrane of guard cells. EMBO J 9, 38893892.
  • 14
    Colcombet J, Thomine S, Guern J, Frachisse JM & Barbier-Brygoo H (2001) Nucleotides provide a voltage-sensitive gate for the rapid anion channel of Arabidopsis hypocotyl cells. J Biol Chem 276, 3613936145.
  • 15
    Geiger D, Scherzer S, Mumm P, Stange A, Marten I, Bauer H, Ache P, Matschi S, Liese A, Al-Rasheid KA et al. (2009) Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase–phosphatase pair. Proc Natl Acad Sci USA 106, 2142521430.
  • 16
    Hedrich R & Marten I (1993) Malate-induced feedback regulation of plasma membrane anion channels could provide a CO2 sensor to guard cells. EMBO J 12, 897901.
  • 17
    Schmidt C, Schelle I, Liao YJ & Schroeder JI (1995) Strong regulation of slow anion channels and abscisic acid signaling in guard cells by phosphorylation and dephosphorylation events. Proc Natl Acad Sci USA 92, 95359539.
  • 18
    Barbier-Brygoo H, De Angeli A, Filleur S, Frachisse JM, Gambale F, Thomine S & Wege S (2011) Anion channels/transporters in plants: from molecular bases to regulatory networks. Annu Rev Plant Biol 62, 2551.
  • 19
    De Angeli A, Thomine S, Frachisse JM, Ephritikhine G, Gambale F & Barbier-Brygoo H (2007) Anion channels and transporters in plant cell membranes. FEBS Lett 581, 23672374.
  • 20
    Roberts SK (2006) Plasma membrane anion channels in higher plants and their putative functions in roots. New Phytol 169, 647666.
  • 21
    Ward JM, Maser P & Schroeder JI (2009) Plant ion channels: gene families, physiology, and functional genomics analyses. Annu Rev Physiol 71, 5982.
  • 22
    Melotto M, Underwood W, Koczan J, Nomura K & He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126, 969980.
  • 23
    Brosché M, Merilo E, Mayer F, Pechter P, Puzorjova I, Brader G, Kangasjarvi J & Kollist H (2010) Natural variation in ozone sensitivity among Arabidopsis thaliana accessions and its relation to stomatal conductance. Plant Cell Environ 33, 914925.
  • 24
    Vahisalu T, Kollist H, Wang YF, Nishimura N, Chan WY, Valerio G, Lamminmaki A, Brosché M, Moldau H, Desikan R et al. (2008) SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452, 487491.
  • 25
    Keller BU, Hedrich R & Raschke K (1989) Voltage-dependent anion channels in the plasma membrane of guard cells. Nature 341, 450453.
  • 26
    Schroeder JI & Hagiwara S (1989) Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells. Nature 338, 427430.
  • 27
    Meyer S, Mumm P, Imes D, Endler A, Weder B, Al-Rasheid KA, Geiger D, Marten I, Martionia E & Hedrich R (2010) AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. Plant J 63, 10541062.
  • 28
    Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Uchimiya H, Hashimoto M & Iba K (2008) CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452, 483486.
  • 29
    Pei ZM, Kuchitsu K, Ward JM, Schwarz M & Schroeder JI (1997) Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 mutants. Plant Cell 9, 409423.
  • 30
    Schroeder JI, Schmidt C & Sheaffer J (1993) Identification of high-affinity slow anion channel blockers and evidence for stomatal regulation by slow anion channels in guard cells. Plant Cell 5, 18311841.
  • 31
    Kim TH, Bohmer M, Hu H, Nishimura N & Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61, 561591.
  • 32
    Linder B & Raschke K (1992) A slow anion channel in guard cells, activating at large hyperpolarization, may be principal for stomatal closing. FEBS Lett 313, 2730.
  • 33
    Schroeder JI & Keller BU (1992) Two types of anion channel currents in guard cells with distinct voltage regulation. Proc Natl Acad Sci USA 89, 50255029.
  • 34
    Raschke K, Shabahang M & Wolf R (2003) The slow and the quick anion conductance in whole guard cells: their voltage-dependent alternation, and the modulation of their activities by abscisic acid and CO2. Planta 217, 639650.
  • 35
    Kangasjärvi J, Jaspers P & Kollist H (2005) Signalling and cell death in ozone-exposed plants. Plant Cell Environ 28, 10211036.
  • 36
    Negi J, Hashimoto M & Iba K (2005) Characterization of CO2-insensitive Arabidopsis mutant cdi3. Plant Cell Physiol 46, S176.
  • 37
    Saji S, Bathula S, Kubo A, Tamaoki M, Kanna M, Aono M, Nakajima N, Nakaji T, Takeda T, Asayama M et al. (2008) Disruption of a gene encoding C4-dicarboxylate transporter-like protein increases ozone sensitivity through deregulation of the stomatal response in Arabidopsis thaliana. Plant Cell Physiol 49, 210.
  • 38
    Lee SC, Lan W, Buchanan BB & Luan S (2009) A protein kinase–phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proc Natl Acad Sci USA 106, 2141921424.
  • 39
    Chen YH, Hu L, Punta M, Bruni R, Hillerich B, Kloss B, Rost B, Love J, Siegelbaum SA & Hendrickson WA (2010) Homologue structure of the SLAC1 anion channel for closing stomata in leaves. Nature 467, 10741080.
  • 40
    Schmidt C & Schroeder JI (1994) Anion selectivity of slow anion channels in the plasma membrane of guard cells (large nitrate permeability). Plant Physiol 106, 383391.
  • 41
    Vahisalu T, Puzorjova I, Brosché M, Valk E, Lepiku M, Moldau H, Pechter P, Wang YS, Lindgren O, Salojarvi J et al. (2010) Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1. Plant J 62, 442453.
  • 42
    Chen ZH, Hills A, Lim CK & Blatt MR (2010) Dynamic regulation of guard cell anion channels by cytosolic free Ca2+ concentration and protein phosphorylation. Plant J 61, 816825.
  • 43
    Siegel RS, Xue S, Murata Y, Yang Y, Nishimura N, Wang A & Schroeder JI (2009) Calcium elevation-dependent and attenuated resting calcium-dependent abscisic acid induction of stomatal closure and abscisic acid-induced enhancement of calcium sensitivities of S-type anion and inward-rectifying K channels in Arabidopsis guard cells. Plant J 59, 207220.
  • 44
    Mori IC, Murata Y, Yang Y, Munemasa S, Wang YF, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR et al. (2006) CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+-permeable channels and stomatal closure. PLoS Biol 4, e327.
  • 45
    Geiger D, Scherzer S, Mumm P, Marten I, Ache P, Matschi S, Liese A, Wellmann C, Al-Rasheid KAS, Grill E et al. (2010) Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc Natl Acad Sci USA 107, 80238028.
  • 46
    Hu H, Boisson-Dernier A, Israelsson-Nordstrom M, Bohmer M, Xue S, Ries A, Godoski J, Kuhn JM & Schroeder JI (2010) Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. Nat Cell Biol 12, 8793.
  • 47
    Xue S, Hu H, Ries A, Merilo E, Kollist H & Schroeder JI (2011) Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO2 signal transduction in guard cell. EMBO J 30, 16451658.
  • 48
    Hashimoto M, Negi J, Young J, Israelsson M, Schroeder JI & Iba K (2006) Arabidopsis HT1 kinase controls stomatal movements in response to CO2. Nat Cell Biol 8, 391397.
  • 49
    Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A & Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 10641068.
  • 50
    Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF et al. (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 10681071.
  • 51
    Belin C, de Franco PO, Bourbousse C, Chaignepain S, Schmitter JM, Vavasseur A, Giraudat J, Barbier-Brygoo H & Thomine S (2006) Identification of features regulating OST1 kinase activity and OST1 function in guard cells. Plant Physiol 141, 13161327.
  • 52
    Vlad F, Rubio S, Rodrigues A, Sirichandra C, Belin C, Robert N, Leung J, Rodriguez PL, Lauriere C & Merlot S (2009) Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis. Plant Cell 21, 31703184.
  • 53
    Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T & Shinozaki K (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci USA 106, 1758817593.
  • 54
    Mustilli AC, Merlot S, Vavasseur A, Fenzi F & Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14, 30893099.
  • 55
    Xie X, Wang Y, Williamson L, Holroyd GH, Tagliavia C, Murchie E, Theobald J, Knight MR, Davies WJ, Leyser HM et al. (2006) The identification of genes involved in the stomatal response to reduced atmospheric relative humidity. Curr Biol 16, 882887.
  • 56
    Thomine S & Barbier-Brygoo H (2010) Structural biology: a peep through anion channels. Nature 467, 10581059.
  • 57
    Loque D, Lalonde S, Looger LL, von Wiren N & Frommer WB (2007) A cytosolic trans-activation domain essential for ammonium uptake. Nature 446, 195198.
  • 58
    Geiger D, Maierhofer T, Al-Rasheid KA, Scherzer S, Mumm P, Liese A, Ache P, Wellmann C, Marten I, Grill E et al. (2011) Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. Sci Signal 4, ra32.
  • 59
    Sasaki T, Mori IC, Furuichi T, Munemasa S, Toyooka K, Matsuoka K, Murata Y & Yamamoto Y (2010) Closing plant stomata requires a homolog of an aluminum-activated malate transporter. Plant Cell Physiol 51, 354365.
  • 60
    Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E & Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406, 731734.
  • 61
    Hoekenga OA, Maron LG, Pineros MA, Cancado GMA, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T et al. (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci USA 103, 97389743.
  • 62
    Goh CH, Kinoshita T, Oku T & Shimazaki K (1996) Inhibition of blue light-dependent H+ pumping by abscisic acid in Vicia guard-cell protoplasts. Plant Physiol 111, 433440.
  • 63
    Merlot S, Leonhardt N, Fenzi F, Valon C, Costa M, Piette L, Vavasseur A, Genty B, Boivin K, Muller A et al. (2007) Constitutive activation of a plasma membrane H+-ATPase prevents abscisic acid-mediated stomatal closure. EMBO J 26, 32163226.
  • 64
    Hamilton DW, Hills A, Kohler B & Blatt MR (2000) Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proc Natl Acad Sci USA 97, 49674972.
  • 65
    Kinoshita T & Shimazaki K (1999) Blue light activates the plasma membrane H+-ATPase by phosphorylation of the C-terminus in stomatal guard cells. EMBO J 18, 55485558.
  • 66
    Outlaw WH & Lowry OH (1977) Organic acid and potassium accumulation in guard cells during stomatal opening. Proc Natl Acad Sci USA 74, 44344438.
  • 67
    Raschke K & Schnabl H (1978) Availability of chloride affects the balance between potassium chloride and potassium malate in guard cells of Vicia faba L. Plant Physiol 62, 8487.
  • 68
    Lee M, Choi Y, Burla B, Kim YY, Jeon B, Maeshima M, Yoo JY, Martinoia E & Lee Y (2008) The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2. Nat Cell Biol 10, 12171223.
  • 69
    Gao XQ, Li CG, Wei PC, Zhang XY, Chen J & Wang XC (2005) The dynamic changes of tonoplasts in guard cells are important for stomatal movement in Vicia faba. Plant Physiol 139, 12071216.
  • 70
    Pei ZM, Ward JM, Harper JF & Schroeder JI (1996) A novel chloride channel in Vicia faba guard cell vacuoles activated by the serine/threonine kinase, CDPK. EMBO J 15, 65646574.
  • 71
    Gaedeke N, Klein M, Kolukisaoglu U, Forestier C, Muller A, Ansorge M, Becker D, Mamnun Y, Kuchler K, Schulz B et al. (2001) The Arabidopsis thaliana ABC transporter AtMRP5 controls root development and stomata movement. EMBO J 20, 18751887.
  • 72
    Nagy R, Grob H, Weder B, Green P, Klein M, Frelet-Barrand A, Schjoerring JK, Brearley C & Martinoia E (2009) The Arabidopsis ATP-binding cassette protein AtMRP5/AtABCC5 is a high affinity inositol hexakisphosphate transporter involved in guard cell signaling and phytate storage. J Biol Chem 284, 3361433622.
  • 73
    Leonhardt N, Marin E, Vavasseur A & Forestier C (1997) Evidence for the existence of a sulfonylurea-receptor-like protein in plants: modulation of stomatal movements and guard cell potassium channels by sulfonylureas and potassium channel openers. Proc Natl Acad Sci USA 94, 1415614161.
  • 74
    Leonhardt N, Vavasseur A & Forestier C (1999) ATP binding cassette modulators control abscisic acid-regulated slow anion channels in guard cells. Plant Cell 11, 11411152.
  • 75
    Suh SJ, Wang YF, Frelet A, Leonhardt N, Klein M, Forestier C, Mueller-Roeber B, Cho MH, Martinoia E & Schroeder JI (2007) The ATP binding cassette transporter AtMRP5 modulates anion and calcium channel activities in Arabidopsis guard cells. J Biol Chem 282, 19161924.
  • 76
    Lemtiri-Chlieh F, MacRobbie EA, Webb AA, Manison NF, Brownlee C, Skepper JN, Chen J, Prestwich GD & Brearley CA (2003) Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cells. Proc Natl Acad Sci USA 100, 1009110095.
  • 77
    Andrews M (1986) The partitioning of nitrate assimilation between root and shoot of higher plants. Plant Cell Environ 9, 511519.
  • 78
    Durrett TP, Gassmann W & Rogers EE (2007) The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol 144, 197205.
  • 79
    Yokosho K, Yamaji N, Ueno D, Mitani N & Ma JF (2009) OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice. Plant Physiol 149, 297305.
  • 80
    Segonzac C, Boyer JC, Ipotesi E, Szponarski W, Tillard P, Touraine B, Sommerer N, Rossignol M & Gibrat R (2007) Nitrate efflux at the root plasma membrane: identification of an Arabidopsis excretion transporter. Plant Cell 19, 37603777.
  • 81
    Badri DV & Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32, 666681.
  • 82
    Rudrappa T, Czymmek KJ, Pare PW & Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148, 15471556.
  • 83
    Jeong J, Suh S, Guan C, Tsay YF, Moran N, Oh CJ, An CS, Demchenko KN, Pawlowski K & Lee Y (2004) A nodule-specific dicarboxylate transporter from alder is a member of the peptide transporter family. Plant Physiol 134, 969978.
  • 84
    Tsay YF, Chiu CC, Tsai CB, Ho CH & Hsu PK (2007) Nitrate transporters and peptide transporters. FEBS Lett 581, 22902300.
  • 85
    Felle HH (2005) pH regulation in anoxic plants. Ann Bot 96, 519532.
  • 86
    Tsay YF, Schroeder JI, Feldmann KA & Crawford NM (1993) The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72, 705713.
  • 87
    Diatloff E, Roberts M, Sanders D & Roberts SK (2004) Characterization of anion channels in the plasma membrane of Arabidopsis epidermal root cells and the identification of a citrate-permeable channel induced by phosphate starvation. Plant Physiol 136, 41364149.
  • 88
    Kiegle E, Gilliham M, Haseloff J & Tester M (2000) Hyperpolarisation-activated calcium currents found only in cells from the elongation zone of Arabidopsis thaliana roots. Plant J 21, 225229.
  • 89
    Santi S & Schmidt W (2009) Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytol 183, 10721084.
  • 90
    Delhaize E, Craig S, Beaton CD, Bennet RJ, Jagadish VC & Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.). 1. Uptake and distribution of aluminum in root apices. Plant Physiol 103, 685693.
  • 91
    Ma JF, Ryan PR & Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6, 273278.
  • 92
    Ryan PR, Tyerman SD, Sasaki T, Furuichi T, Yamamoto Y, Zhang WH & Delhaize E (2011) The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils. J Exp Bot 62, 920.
  • 93
    Kollmeier M, Dietrich P, Bauer CS, Horst WJ & Hedrich R (2001) Aluminum activates a citrate-permeable anion channel in the aluminum-sensitive zone of the maize root apex. A comparison between an aluminum-sensitive and an aluminum-resistant cultivar. Plant Physiol 126, 397410.
  • 94
    Pineros MA & Kochian LV (2001) A patch-clamp study on the physiology of aluminum toxicity and aluminum tolerance in maize. Identification and characterization of Al3+-induced anion channels. Plant Physiol 125, 292305.
  • 95
    Ryan PR, Skerrett M, Findlay GP, Delhaize E & Tyerman SD (1997) Aluminum activates an anion channel in the apical cells of wheat roots. Proc Natl Acad Sci USA 94, 65476552.
  • 96
    Zhang WH, Ryan PR & Tyerman SD (2001) Malate-permeable channels and cation channels activated by aluminum in the apical cells of wheat roots. Plant Physiol 125, 14591472.
  • 97
    Pineros MA, Magalhaes JV, Carvalho Alves VM & Kochian LV (2002) The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize. Plant Physiol 129, 11941206.
  • 98
    Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E & Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37, 645653.
  • 99
    Pineros MA, Cancado GM & Kochian LV (2008) Novel properties of the wheat aluminum tolerance organic acid transporter (TaALMT1) revealed by electrophysiological characterization in Xenopus oocytes: functional and structural implications. Plant Physiol 147, 21312146.
  • 100
    Zhang WH, Ryan PR, Sasaki T, Yamamoto Y, Sullivan W & Tyerman SD (2008) Characterization of the TaALMT1 protein as an Al3+-activated anion channel in transformed tobacco (Nicotiana tabacum L.) cells. Plant Cell Physiol 49, 13161330.
  • 101
    Pereira JF, Zhou G, Delhaize E, Richardson T, Zhou M & Ryan PR (2010) Engineering greater aluminium resistance in wheat by over-expressing TaALMT1. Ann Bot 106, 205214.
  • 102
    Pineros MA, Cancado GM, Maron LG, Lyi SM, Menossi M & Kochian LV (2008) Not all ALMT1-type transporters mediate aluminum-activated organic acid responses: the case of ZmALMT1 – an anion-selective transporter. Plant J 53, 352367.
  • 103
    Motoda H, Sasaki T, Kano Y, Ryan PR, Delhaize E, Matsumoto H & Yamamoto Y (2007) The membrane topology of ALMT1, an aluminum-activated malate transport protein in wheat (Triticum aestivum). Plant Signal Behav 2, 467472.
  • 104
    Yamaguchi M, Sasaki T, Sivaguru M, Yamamoto Y, Osawa H, Ahn SJ & Matsumoto H (2005) Evidence for the plasma membrane localization of Al-activated malate transporter (ALMT1). Plant Cell Physiol 46, 812816.
  • 105
    Furuichi T, Sasaki T, Tsuchiya Y, Ryan PR, Delhaize E & Yamamoto Y (2010) An extracellular hydrophilic carboxy-terminal domain regulates the activity of TaALMT1, the aluminum-activated malate transport protein of wheat. Plant J 64, 4755.
  • 106
    Kobayashi Y, Hoekenga OA, Itoh H, Nakashima M, Saito S, Shaff JE, Maron LG, Pineros MA, Kochian LV & Koyama H (2007) Characterization of AtALMT1 expression in aluminum-inducible malate release and its role for rhizotoxic stress tolerance in Arabidopsis. Plant Physiol 145, 843852.
  • 107
    Osawa H & Matsumoto H (2001) Possible involvement of protein phosphorylation in aluminum-responsive malate efflux from wheat root apex. Plant Physiol 126, 411420.
  • 108
    Ligaba A, Kochian L & Pineros M (2009) Phosphorylation at S384 regulates the activity of the TaALMT1 malate transporter that underlies aluminum resistance in wheat. Plant J 60, 411423.
  • 109
    Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K & Ma JF (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48, 10811091.
  • 110
    Magalhaes JV, Liu J, Guimaraes CT, Lana UG, Alves VM, Wang YH, Schaffert RE, Hoekenga OA, Pineros MA, Shaff JE et al. (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39, 11561161.
  • 111
    Maron LG, Pineros MA, Guimaraes CT, Magalhaes JV, Pleiman JK, Mao C, Shaff J, Belicuas SN & Kochian LV (2010) Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. Plant J 61, 728740.
  • 112
    Neumann G & Martinoia E (2002) Cluster roots – an underground adaptation for survival in extreme environments. Trends Plant Sci 7, 162167.
  • 113
    Zhang WH, Ryan PR & Tyerman SD (2004) Citrate-permeable channels in the plasma membrane of cluster roots from white lupin. Plant Physiol 136, 37713783.
  • 114
    Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Michaux-Ferriere N, Thibaud JB & Sentenac H (1998) Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Cell 94, 647655.
  • 115
    Kohler B & Raschke K (2000) The delivery of salts to the xylem. Three types of anion conductance in the plasmalemma of the xylem parenchyma of roots of barley. Plant Physiol 122, 243254.
  • 116
    Kohler B, Wegner LH, Osipov V & Raschke K (2002) Loading of nitrate into the xylem: apoplastic nitrate controls the voltage dependence of X-QUAC, the main anion conductance in xylem-parenchyma cells of barley roots. Plant J 30, 133142.
  • 117
    Wegner LH & Raschke K (1994) Ion channels in the xylem parenchyma of barley roots: a procedure to isolate protoplasts from this tissue and a patch-clamp exploration of salt passageways into xylem vessels. Plant Physiol 105, 799813.
  • 118
    Lin SH, Kuo HF, Canivenc G, Lin CS, Lepetit M, Hsu PK, Tillard P, Lin HL, Wang YY, Tsai CB et al. (2008) Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. Plant Cell 20, 25142528.
  • 119
    Gilliham M & Tester M (2005) The regulation of anion loading to the maize root xylem. Plant Physiol 137, 819828.
  • 120
    Yi Y & Guerinot ML (1996) Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency. Plant J 10, 835844.
  • 121
    Rogers EE & Guerinot ML (2002) FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis. Plant Cell 14, 17871799.
  • 122
    Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S & Nishizawa N (2004) A rice FRD3-like (OsFRDL1) gene is expressed in the cells involved in long-distance transport. Soil Sci Plant Nutr 50, 11331140.
  • 123
    Diatloff E, Peyronnet R, Colcombet J, Thomine S, Barbier-Brygoo H & Frachisse JM (2010) R type anion channel: a multifunctional channel seeking its molecular identity. Plant Signal Behav 5, 13491359.
  • 124
    Thomine S, Lelievre F, Boufflet M, Guern J & Barbier-Brygoo H (1997) Anion-channel blockers interfere with auxin responses in dark-grown Arabidopsis hypocotyls. Plant Physiol 115, 533542.