SEARCH

SEARCH BY CITATION

References

  • 1
    Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR & Ball SE (2004) Drug–drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos 32, 12011208.
  • 2
    Johnson EF & Stout CD (2005) Structural diversity of human xenobiotic-metabolizing cytochrome P450 monooxygenases. Biochem Biophys Res Commun 338, 331336.
  • 3
    Al Omari A & Murry DJ (2007) Pharmacogenetics of the cytochrome P450 enzyme system: review of current knowledge and clinical significance. J Pharm Pract 20, 206218.
  • 4
    Guengerich FP (2001) Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 14, 611650.
  • 5
    Ingelman-Sundberg M (2004) Human drug metabolising cytochrome P450 enzymes: properties and polymorphisms. Naunyn Schmiedebergs Arch Pharmacol 369, 89104.
  • 6
    Anzenbacher P, Anzenbacherova E, Lange R, Skopalik J & Otyepka M (2008) Active sites of cytochromes P450: what are they like? Acta Chim Slov 55, 6366.
  • 7
    Poulos TL (2005) Structural and functional diversity in heme monooxygenases. Drug Metab Dispos 33, 1018.
  • 8
    Zhao Y & Halpert JR (2007) Structure–function analysis of cytochromes P450 2B. Biochim Biophys Acta 1770, 402412.
  • 9
    Poulos TL (2005) Structural biology of heme monooxygenases. Biochem Biophys Res Commun 338, 337345.
  • 10
    Scott EE, White MA, He YA, Johnson EF, Stout CD & Halpert JR (2004) Structure of mammalian cytochrome P450 2B4 complexed with 4-(4-chlorophenyl)imidazole at 1.9-Å resolution: insight into the range of P450 conformations and the coordination of redox partner binding. J Biol Chem 279, 2729427301.
  • 11
    Yano JK, Hsu M-H, Griffin KJ, Stout CD & Johnson EF (2005) Structures of human microsomal cytochrome P450 2A6 complexed with coumarin and methoxsalen. Nat Struct Mol Biol 12, 822823.
  • 12
    Smith BD, Sanders JL, Porubsky PR, Lushington GH, Stout CD & Scott EE (2007) Structure of the human lung cytochrome P450 2A13. J Biol Chem 282, 1730617313.
  • 13
    Wester MR, Yano JK, Schoch GA, Yang C, Griffin KJ, Stout CD & Johnson EF (2004) The structure of human cytochrome P4502C9 complexed with flurbiprofen at 2.0-angstrom resolution. J Biol Chem 279, 3563035637.
  • 14
    Williams PA, Cosme J, Sridhar V, Johnson EF & McRee DE (2000) Microsomal cytochrome P450 2C5: comparison to microbial P450s and unique features. J Inorg Biochem 81, 183190.
  • 15
    Zhao Y, White MA, Muralidhara BK, Sun L, Halpert JR & Stout CD (2006) Structure of microsomal cytochrome P450 2B4 complexed with the antifungal drug bifonazole: insight into P450 conformational plasticity and membrane interaction. J Biol Chem 281, 59735981.
  • 16
    Ekroos M & Sjögren T (2006) Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc Natl Acad Sci USA 103, 1368213687.
  • 17
    Kumar S, Zhao Y, Sun L, Negi SS, Halpert JR & Muralidhara BK (2007) Rational engineering of human cytochrome P450 2B6 for enhanced expression and stability: importance of a Leu264[RIGHTWARDS ARROW]Phe substitution. Mol Pharmacol 72, 11911199.
  • 18
    Wilderman PR, Shah MB, Liu T, Li S, Hsu S, Roberts AG, Goodlett DR, Zhang Q, Woods VL Jr, Stout CD et al. (2010) Plasticity of cytochrome P450 2B4 as investigated by hydrogen–deuterium exchange mass spectrometry and X-ray crystallography. J Biol Chem 285, 3860238611.
  • 19
    Mo SL, Liu YH, Duan W, Wei MQ, Kanwar JR & Zhou SF (2009) Substrate specificity, regulation, and polymorphism of human cytochrome P450 2B6. Curr Drug Metab 10, 730753.
  • 20
    Wang HB & Tompkins LM (2008) CYP2B6: new insights into a historically overlooked cytochrome P450 isozyme. Curr Drug Metab 9, 598610.
  • 21
    Daly AK (2003) Pharmacogenetics of the major polymorphic metabolizing enzymes. Fundam Clin Pharmacol 17, 2741.
  • 22
    Ekhart C, Doodeman VD, Rodenhuis S, Smits PHM, Beijnen JH & Huitema ADR (2008) Influence of polymorphisms of drug metabolizing enzymes (CYP2B6, CYP2C9, CYP2C19, CYP3A4, CYP3A5, GSTA1, GSTP1, ALDH1A1 and ALDH3A1) on the pharmacokinetics of cyclophosphamide and 4-hydroxycyclophosphamide. Pharmacogenet Genomics 18, 515523.
  • 23
    Zanger UM, Klein K, Saussele T, Blievernicht J, Hofmann M & Schwab M (2007) Polymorphic CYP2B6: molecular mechanisms and emerging clinical significance. Pharmacogenomics 8, 743759.
  • 24
    Restrepo JG, Garcia-Martin E, Martinez C & Agundez JAG (2009) Polymorphic drug metabolism in anaesthesia. Curr Drug Metab 10, 236246.
  • 25
    Talakad JC, Kumar S & Halpert JR (2009) Decreased susceptibility of the cytochrome P450 2B6 variant K262R to inhibition by several clinically important drugs. Drug Metab Dispos 37, 644650.
  • 26
    Kumar S, Chen CS, Waxman DJ & Halpert JR (2005) Directed evolution of mammalian cytochrome P450 2B1: mutations outside of the active site enhance the metabolism of several substrates, including the anticancer prodrugs cyclophosphamide and ifosfamide. J Biol Chem 280, 1956919575.
  • 27
    Kumar S, Sun L, Liu H, Muralidhara BK & Halpert JR (2006) Engineering mammalian cytochrome P450 2B1 by directed evolution for enhanced catalytic tolerance to temperature and dimethyl sulfoxide. Protein Eng Des Sel 19, 547554.
  • 28
    Sun L, Chen CS, Waxman DJ, Liu H, Halpert JR & Kumar S (2007) Re-engineering cytochrome P450 2B11dH for enhanced metabolism of several substrates including the anti-cancer prodrugs cyclophosphamide and ifosfamide. Arch Biochem Biophys 458, 167174.
  • 29
    Talakad JC, Wilderman PR, Davydov DR, Kumar S & Halpert JR (2009) Rational engineering of cytochromes P450 2B6 and 2B11 for enhanced stability: insights into structural importance of residue 334. Arch Biochem Biophys 494, 151158.
  • 30
    Zhao Y & Halpert JR (2006) Conserved and alternative residue–residue interactions and their role in structure function of CYP2B enzymes. In 16th International Symposium on Microsomes and Drug Oxidations (MDO 2006) (Abstracts), pp. 86. Budapest, Hungary.
  • 31
    Gay SC, Shah MB, Talakad JC, Maekawa K, Roberts AG, Wilderman PR, Sun L, Yang JY, Huelga SC, Hong W-X et al. (2010) Crystal structure of a cytochrome P450 2B6 genetic variant in complex with the inhibitor 4-(4-chlorophenyl)imidazole at 2.0-Å resolution. Mol Pharmacol 77, 529538.
  • 32
    Gillam EM (2005) Exploring the potential of xenobiotic-metabolising enzymes as biocatalysts: evolving designer catalysts from polyfunctional cytochrome P450 enzymes. Clin Exp Pharmacol Physiol 32, 147152.
  • 33
    Kumar S & Halpert JR (2005) Use of directed evolution of mammalian cytochromes P450 for investigating the molecular basis of enzyme function and generating novel biocatalysts. Biochem Biophys Res Commun 338, 456464.
  • 34
    Gillam EM (2007) Extending the capabilities of nature’s most versatile catalysts: directed evolution of mammalian xenobiotic-metabolizing P450s. Arch Biochem Biophys 464, 176186.
  • 35
    Domanski TL & Halpert JR (2001) Analysis of mammalian cytochrome P450 structure and function by site-directed mutagenesis. Curr Drug Metab 2, 117137.
  • 36
    Kumar S, Scott EE, Liu H & Halpert JR (2003) A rational approach to re-engineer cytochrome P450 2B1 regioselectivity based on the crystal structure of cytochrome P450 2C5. J Biol Chem 278, 1717817184.
  • 37
    Halpert JR & He YA (1993) Engineering of cytochrome P450 2B1 specificity. Conversion of an androgen 16 beta-hydroxylase to a 15 alpha-hydroxylase. J Biol Chem 268, 44534457.
  • 38
    Harlow GR, He YA & Halpert JR (1997) Functional interaction between amino-acid residues 242 and 290 in cytochromes P-450 2B1 and 2B11. Biochim Biophys Acta 1338, 259266.
  • 39
    Whitehouse CJC, Yang W, Yorke JA, Rowlatt BC, Strong AJF, Blanford CF, Bell SG, Bartlam M, Wong L-L & Rao Z (2010) Structural basis for the properties of two single-site proline mutants of CYP102A1 (P450BM3). ChemBioChem 11, 25492556.
  • 40
    Gay SC, Sun L, Maekawa K, Halpert JR & Stout CD (2009) Crystal structures of cytochrome P450 2B4 in complex with the inhibitor 1-biphenyl-4-methyl-1H-imidazole: ligand-induced structural response through α-helical repositioning. Biochemistry 48, 47624771.
  • 41
    Scott EE, Liu H, Qun He Y, Li W & Halpert JR (2004) Mutagenesis and molecular dynamics suggest structural and functional roles for residues in the N-terminal portion of the cytochrome P450 2B1 I helix. Arch Biochem Biophys 423, 266276.
  • 42
    Hernandez CE, Kumar S, Liu H & Halpert JR (2006) Investigation of the role of cytochrome P450 2B4 active site residues in substrate metabolism based on crystal structures of the ligand-bound enzyme. Arch Biochem Biophys 455, 6167.
  • 43
    Shah MB, Pascual J, Zhang Q, Stout CD & Halpert JR (2011) Structures of cytochrome P450 2B6 bound to 4-benzylpyridine and 4-(4-nitrobenzyl)pyridine: insight into inhibitor binding and rearrangement of active site side chains. Mol Pharmacol doi:10.1124/mol.111.074427.
  • 44
    Harlow GR & Halpert JR (1997) Alanine-scanning mutagenesis of a putative substrate recognition site in human cytochrome P450 3A4. Role of residues 210 and 211 in flavonoid activation and substrate specificity. J Biol Chem 272, 53965402.
  • 45
    Omura T & Sato R (1964) Carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J Biol Chem 239, 23702378.
  • 46
    Omura T & Sato R (1964) Carbon monoxide-binding pigment of liver microsomes. 2. Solubilization purification + properties. J Biol Chem 239, 23792385.
  • 47
    Arthurs TD (1963) Algorithm 176: least squares surface fit. Commun ACM 6, 313.
  • 48
    Davydov DR, Botchkareva AE, Davydova NE & Halpert JR (2005) Resolution of two substrate-binding sites in an engineered cytochrome P450eryF bearing a fluorescent probe. Biophys J 89, 418432.
  • 49
    Davydov DR, Halpert JR, Renaud JP & Hui Bon Hoa G (2003) Conformational heterogeneity of cytochrome P450 3A4 revealed by high pressure spectroscopy. Biochem Biophys Res Commun 312, 121130.
  • 50
    Davydov DR, Deprez E, Hui Bon Hoa G, Knyushko TV, Kuznetsova GP, Koen YM & Archakov AI (1995) High-pressure-induced transitions in microsomal cytochrome P450 2B4 in solution: evidence for conformational inhomogeneity in the oligomers. Arch Biochem Biophys 320, 330344.
  • 51
    Scott EE, Spatzenegger M & Halpert JR (2001) A truncation of 2B subfamily cytochromes P450 yields increased expression levels, increased solubility, and decreased aggregation while retaining function. Arch Biochem Biophys 395, 5768.
  • 52
    He YQ, He YA & Halpert JR (1995) Escherichia coli expression of site-directed mutants of cytochrome-P450 2B1 from 6 substrate recognition sites – substrate-specificity and inhibitor selectivity studies. Chem Res Toxicol 8, 574579.
  • 53
    Holmans PL, Shet MS, Martin-Wixtrom CA, Fisher CW & Estabrook RW (1994) The high-level expression in Escherichia coli of the membrane-bound form of human and rat cytochrome b5 and studies on their mechanism of function. Arch Biochem Biophys 312, 554565.
  • 54
    Hess B, Kutzner C, van der Spoel D & Lindahl E (2008) GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4, 435447.
  • 55
    Eswar N, Eramian D, Webb B, Shen MY & Sali A (2008) Protein structure modeling with MODELLER. Methods Mol Biol 426, 145159.
  • 56
    Oda A, Yamaotsu N & Hirono S (2005) New AMBER force field parameters of heme iron for cytochrome P450s determined by quantum chemical calculations of simplified models. J Comput Chem 26, 818826.
  • 57
    Froelich JW, Hearshen DO, Halpert RD & Patel S (1985) Nuclear magnetic resonance: current and future clinical applications. Henry Ford Hosp Med J 33, 122127.
  • 58
    Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A & Haak JR (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81, 36843690.
  • 59
    Oostenbrink C, Soares TA, van der Vegt NFA & van Gunsteren WF (2005) Validation of the 53A6 GROMOS force field. Eur Biophys J 34, 273284.
  • 60
    Darden T, York D & Pedersen L (1993) Particle Mesh Ewald – an N.log(N) method for Ewald sums in large systems. J Chem Phys 98, 1008910092.
  • 61
    Leslie AGW (1999) Integration of macromolecular diffraction data. Acta Crystallogr D Biol Crystallogr 55, 16961702.
  • 62
    Bailey S (1994) The CCP4 suite – programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50, 760763.
  • 63
    McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC & Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40, 658674.
  • 64
    Adams PD, Grosse-Kunstleve RW, Hung LW, Ioerger TR, McCoy AJ, Moriarty NW, Read RJ, Sacchettini JC, Sauter NK & Terwilliger TC (2002) PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58, 19481954.
  • 65
    Emsley P, Lohkamp B, Scott WG & Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66, 486501.
  • 66
    Delano WL (2010) The PyMOL Molecular Graphics System, MacPyMOL ed., 1.3. Schrodinger, LLC, Portland, OR.