• 1
    Lehmann H, Fischer G, Hübner G, Kohnert KD & Schellenberger A (1973) The influence of steric and electronic parameters on the substrate behavior of 2-oxo acids to yeast pyruvate decarboxylase. Eur J Biochem 32, 8387.
  • 2
    Hübner G, Atanassova M & Schellenberger A (1986) Investigations on the pyruvate decarboxylase catalysed oxidative decarboxylation of 2-oxo acids by 2,6-dichlorophenolindophenol. Biomed Biochim Acta 45, 823832.
  • 3
    Schellenberger A, Hübner G & Neef H (1997) Cofactor designing in functional analysis of thiamin diphosphate enzymes. Methods Enzymol 279, 131146.
  • 4
    Hübner G, Weidhase R & Schellenberger A (1978) The mechanism of substrate activation of pyruvate decarboxylase. A first approach. Eur J Biochem 92, 175181.
  • 5
    Hübner G, König S & Schellenberger A (1988) The functional role of thiol groups of pyruvate decarboxylase from brewer’s yeast. Biomed Biochim Acta 47, 918.
  • 6
    König S, Hübner G & Schellenberger A (1990) Cross-linking of pyruvate decarboxylase. Characterization of the native and substrate-activated states. Biomed Biochim Acta 49, 465471.
  • 7
    Killenberg-Jabs M, König S, Eberhardt I, Hohmann S & Hübner G (1997) Role of Glu51 for cofactor binding and catalytic activity in pyruvate decarboxylase from yeast studied by site-directed mutagenesis. Biochemistry 36, 19001905.
  • 8
    Baburina I, Gao Y, Hu Z, Jordan F, Hohmann S & Furey W (1994) Substrate activation of brewer’s yeast pyruvate decarboxylase is abolished by mutation of cysteine 221 to serine. Biochemistry 33, 56305635.
  • 9
    Sergienko EA & Jordan F (2001) Catalytic acid–base groups in yeast pyruvate decarboxylase. 3. A steady-state kinetic model consistent with the behavior of both wild-type and variant enzymes at all relevant pH values. Biochemistry 40, 73827403.
  • 10
    Liu M, Sergienko EA, Guo FS, Wang J, Tittmann K, Hübner G, Furey W & Jordan F (2001) Catalytic acid–base groups in yeast pyruvate decarboxylase. 1. Site-directed mutagenesis and steady-state kinetic studies on the enzyme with the D28A, H114F, H115F, and E477Q substitutions. Biochemistry 40, 73557368.
  • 11
    Dyda F, Furey W, Swaminathan S, Sax M, Farrenkopf B & Jordan F (1993) Catalytic centers in the thiamin diphosphate dependent enzyme pyruvate decarboxylase at 2.4-Å resolution. Biochemistry 32, 61656170.
  • 12
    Lu G, Dobritzsch D, König S & Schneider G (1997) Novel tetramer assembly of pyruvate decarboxylase from brewer’s yeast observed in a new crystal form. FEBS Lett 403, 249253.
  • 13
    Lu G, Dobritzsch D, Baumann S, Schneider G & König S (2000) The structural basis of substrate activation in yeast pyruvate decarboxylase – a crystallographic and kinetic study. Eur J Biochem 267, 861868.
  • 14
    Dobritzsch D, König S, Schneider G & Lu G (1998) High resolution crystal structure of pyruvate decarboxylase from Zymomonas mobilis. Implications for substrate activation in pyruvate decarboxylases. J Biol Chem 273, 2019620204.
  • 15
    Furey W, Arjunan P, Chen L, Sax M, Guo F & Jordan F (1998) Structure–function relationships and flexible tetramer assembly in pyruvate decarboxylase revealed by analysis of crystal structures. Biochim Biophys Acta 1385, 253270.
  • 16
    Kutter S, Wille G, Relle S, Weiss MS, Hübner G & König S (2006) The crystal structure of pyruvate decarboxylase from Kluyveromyces lactis. Implications for the substrate activation mechanism of this enzyme. FEBS J 273, 41994209.
  • 17
    Kutter S, Weiss MS, Wille G, Golbik R, Spinka M & König S (2009) Covalently bound substrate at the regulatory site of yeast pyruvate decarboxylase triggers allosteric enzyme activation. J Biol Chem 284, 1213612144.
  • 18
    König S, Svergun D, Koch MHJ, Hübner G & Schellenberger A (1992) Synchrotron radiation solution X-ray scattering study of the pH dependence of the quaternary structure of yeast pyruvate decarboxylase. Biochemistry 31, 87268731.
  • 19
    König S, Svergun D, Koch MHJ, Hübner G & Schellenberger A (1993) The influence of the effectors of yeast pyruvate decarboxylase (PDC) on the conformation of the dimers and tetramers and their pH-dependent equilibrium. Eur Biophys J 22, 185194.
  • 20
    König S, Svergun DI, Volkov VV, Feigin LA & Koch MHJ (1998) Small-angle X-ray scattering studies on ligand-induced subunit interactions of the thiamine diphosphate dependent enzyme pyruvate decarboxylase from different organisms. Biochemistry 37, 53295334.
  • 21
    Killenberg-Jabs M, Jabs A, Lilie H, Golbik R & Hübner G (2001) Active oligomeric states of pyruvate decarboxylase and their functional characterization. Eur J Biochem 268, 16981704.
  • 22
    Rosa AL, Alvarez ME, Lawson D & Maccioni HJF (1990) A polypeptide of 59 kDa is associated with bundles of cytoplasmatic filaments in Neurospora crassa. Biochem J 268, 649655.
  • 23
    Alvarez ME, Rosa AL, Temporini ED, Wolstenholme A, Panzetta G, Patrito L & Maccioni HJF (1993) The 59-kDa polypeptide constituent of 8–10 nm cytoplasmic filaments in Neurospora crassa is a pyruvate decarboxylase. Gene 130, 253258.
  • 24
    Krieger F, Spinka M, Golbik R, Hübner G & König S (2002) Pyruvate decarboxylase from Kluyveromyces lactis– an enzyme with an extraordinary substrate activation behaviour. Eur J Biochem 269, 32563263.
  • 25
    Sieber M, König S, Hübner G & Schellenberger A (1983) A rapid procedure for the preparation of highly purified pyruvate decarboxylase from brewer’s yeast. Biomed Biochim Acta 42, 343349.
  • 26
    Mücke U, König S & Hübner G (1995) Purification and characterisation of pyruvate decarboxylase from pea seeds (Pisum sativum cv. Miko). Biol Chem Hoppe-Seyler 376, 111117.
  • 27
    Dietrich A & König S (1997) Substrate activation behaviour of pyruvate decarboxylase from Pisum  sativum cv. Miko. FEBS Lett 400, 4244.
  • 28
    Werther T, Spinka M, Tittmann K, Schütz A, Golbik R, Mrestani-Klaus C, Hübner G & König S (2008) Amino acids allosterically regulate the thiamine diphosphate-dependent alpha-keto acid decarboxylase from Mycobacterium tuberculosis. J Biol Chem 283, 53445354.
  • 29
    Hanes CS (1932) Studies on plant amylases. 1. The effect of starch concentration upon the velocity of hydrolysis by the amylase of germinated barley. Biochem J 26, 14061421.
  • 30
    Bringer-Meyer S, Schimz KL & Sahm H (1986) Pyruvate decarboxylase from Zymomonas mobilis. Isolation and partial characterization. Arch Microbiol 146, 105110.
  • 31
    Boiteux A & Hess B (1970) Allosteric properties of yeast pyruvate decarboxylase. FEBS Lett 9, 293296.
  • 32
    Thompson-Coffe C, Borioli G, Zickler D & Rosa AL (1999) Pyruvate decarboxylase filaments are associated with the cortical cytoskeleton of asci and spores over the sexual cycle of filamentous ascomycetes. Fungal Genet Biol 26, 7180.
  • 33
    Killenberg-Jabs M, König S, Hohmann S & Hübner G (1996) Purification and characterisation of the pyruvate decarboxylase from a haploid strain of Saccharomyces cerevisiae. Biol Chem Hoppe-Seyler 377, 313317.
  • 34
    Hübner G & Schellenberger A (1986) Pyruvate decarboxylase – potentially inactive in the absence of the substrate. Biochem Int 13, 767772.
  • 35
    Sergienko EA & Jordan F (2002) New model for activation of yeast pyruvate decarboxylase by substrate consistent with the alternating sites mechanism. Demonstration of the existence of two active forms of the enzyme. Biochemistry 41, 39523967.
  • 36
    Jordan F, Nemeria NS & Sergienko E (2005) Multiple modes of active center communication in thiamin diphosphate-dependent enzymes. Acc Chem Res 38, 755763.
  • 37
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72, 248254.
  • 38
    Petoukhov MV, Konarev PV, Kikhney AG & Svergun DI (2007) ATSAS2.1 – towards automated and web-supported small-angle scattering data analysis. J Appl Crystallogr 40, 223228.
  • 39
    Konarev PV, Volkov VV, Sokolova AV, Koch MHJ & Svergun DI (2003) PRIMUS: a Windows PC-based system for small angle scattering data analysis. J Appl Crystallogr 36, 12771282.
  • 40
    Svergun DI (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Crystallogr 25, 495503.