• 1
    Banci L, Bertini I, Cantini F & Ciofi-Baffoni S (2010) Cellular copper distribution: a mechanistic systems biology approach. Cell Mol Life Sci 67, 25632589.
  • 2
    Singleton C & Le Brun NE (2007) Atx1-like chaperones and their cognate P-type ATPases: copper-binding and transfer. Biometals 20, 275289.
  • 3
    Gourdon P, Liu XY, Skjorringe T, Morth JP, Moller LB, Pedersen BP & Nissen P (2011) Crystal structure of a copper-transporting PIB-type ATPase. Nature 475, 5964.
  • 4
    Arnesano F, Banci L, Bertini I, Ciofi-Baffoni S, Molteni E, Huffman DL & O’Halloran TV (2002) Metallochaperones and metal-transporting ATPases: a comparative analysis of sequences and structures. Genome Res 12, 255271.
  • 5
    Banci L, Bertini I, Cantini F, Felli IC, Gonnelli L, Hadjiliadis N, Pierattelli R, Rosato A & Voulgaris P (2006) The Atx1–Ccc2 complex is a metal-mediated protein–protein interaction. Nat Chem Biol 2, 367368.
  • 6
    Barry AN, Shinde U & Lutsenko S (2010) Structural organization of human Cu-transporting ATPases: learning from building blocks. J Biol Inorg Chem 15, 4759.
  • 7
    Morin I, Gudin S, Mintz E & Cuillel M (2009) Dissecting the role of the N-terminal metal-binding domains in activating the yeast copper ATPase in vivo. FEBS J 276, 44834495.
  • 8
    Gonzalez-Guerrero M, Hong D & Arguello JM (2009) Chaperone-mediated Cu+ delivery to Cu+ transport ATPases: requirement of nucleotide binding. J Biol Chem 284, 2080420811.
  • 9
    Wu CC, Rice WJ & Stokes DL (2008) Structure of a copper pump suggests a regulatory role for its metal-binding domain. Structure 16, 976985.
  • 10
    Radford DS, Kihlken MA, Borrelly GPM, Harwood CR, Le Brun NE & Cavet JS (2003) CopZ from Bacillus subtilis interacts in vivo with a copper exporting CPx-type ATPase CopA. FEMS Microbiol Lett 220, 105112.
  • 11
    Banci L, Bertini I, Ciofi-Baffoni S, D’Onofrio M, Gonnelli L, Marhuenda-Egea FC & Ruiz-Dueñas FJ (2002) Solution structure of the N-terminal domain of a potential copper-translocating P-type ATPase from Bacillus subtilis in the apo and Cu(I) loaded states. J Mol Biol 317, 415429.
  • 12
    Banci L, Bertini I, Ciofi-Baffoni S, Gonnelli L & Su X-C (2003) A core mutation affecting the folding properties of a soluble domain of the ATPase protein CopA from Bacillus subtilis. J Mol Biol 331, 473484.
  • 13
    Singleton C, Banci L, Ciofi-Baffoni S, Tenori L, Kihlkenl MA, Boetzel R & Le Brun NE (2008) Structure and Cu(I)-binding properties of the N-terminal soluble domains of Bacillus subtilis CopA. Biochem J 411, 571579.
  • 14
    Banci L, Bertini I, Ciofi-Baffoni S, Gonnelli L & Su X-C (2003) Structural basis for the function of the N-terminal domain of the ATPase CopA from Bacillus subtilis. J Biol Chem 278, 5050650513.
  • 15
    Singleton C & Le Brun NE (2009) The N-terminal soluble domains of Bacillus subtilis CopA exhibit a high affinity and capacity for Cu(I) ions. Dalton Trans, 688696.
  • 16
    Kihlken MA, Leech AP & Le Brun NE (2002) Copper-mediated dimerization of CopZ, a predicted copper chaperone from Bacillus subtilis. Biochem J 368, 729739.
  • 17
    Pountney DL, Schauwecker I, Zarn J & Vasak M (1994) Formation of mammalian Cu8-metallothionein in vitro– evidence for the existence of 2 Cu(I)4–thiolate clusters. Biochemistry 33, 96999705.
  • 18
    Zhou L, Singleton C & Le Brun NE (2008) High Cu(I) and low proton affinities of the CXXC motif of Bacillus subtilis CopZ. Biochem J 413, 459465.
  • 19
    Yatsunyk LA & Rosenzweig AC (2007) Cu(I) binding and transfer by the N-terminus of the Wilson disease protein. J Biol Chem 282, 86228631.
  • 20
    Lewin A, Crow A, Oubrie A & Le Brun NE (2006) Molecular basis for specificity of the extracytoplasmic thioredoxin ResA. J Biol Chem 281, 3546735477.
  • 21
    Nelson JW & Creighton TE (1994) Reactivity and ionization of the active-site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo. Biochemistry 33, 59745983.
  • 22
    Cobine P, Wickramasinghe WA, Harrison MD, Weber T, Solioz M & Dameron CT (1999) The Enterococcus hirae copper chaperone CopZ delivers copper(I) to the CopY repressor. FEBS Lett 445, 2730.
  • 23
    Dameron CT, Winge DR, George GN, Sansone M, Hu S & Hamer D (1991) A copper thiolate polynuclear cluster in the ACE1 transcrption factor. Proc Natl Acad Sci USA 88, 61276131.
  • 24
    Graden JA, Posewitz MC, Simon JR, George GN, Pickering IJ & Winge DR (1996) Presence of a copper(I)-thiolate regulatory domain in the copper-activated transcription factor Amt1. Biochemistry 35, 1458314589.
  • 25
    Pace CN, Vajdos F, Fee L, Grimsley G & Gray T (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4, 24112423.
  • 26
    Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J & Bax A (1995) NMRpipe – a multidimensional spectral processing system based on Unix pipes. J Biomol NMR 6, 277293.
  • 27
    Demeler B (2003) Ultrascan. The University of Texas Health Science Center, San Antonio.
  • 28
    Laue TM, Shah BD, Ridgeway TM & Pelletier SL (1992) Computer-aided interpretation of analytical sedimentation data for proteins. In The Analytical Ultracentrifuge in Biochemistry and Polymer Science (Harding SE, Rowe AJ & Horton J eds), pp. 90125. Royal Society of Chemistry, Cambridge.
  • 29
    Xiao Z, Loughlin F, George GN, Howlett GJ & Wedd AG (2004) C-Terminal domain of the membrane copper transporter Ctr1 from Saccharomyces cerevisiae binds four Cu(I) Ions as a cuprous–thiolate polynuclear cluster: sub-femtomolar Cu(I) affinity of three proteins involved in copper trafficking. J Am Chem Soc 126, 30813090.
  • 30
    Jocelyn PC (1972) Biochemistry of the SH Group. Academic Press, London.
  • 31
    Haugland RP, Johnson ID, Spence MTZ & Basey A (2005) Handbook: A Guide to Fluorescent Probes and Labeling Technologies, 10th edn. Invitrogen, Madison, WI.