SEARCH

SEARCH BY CITATION

References

  • 1
    Itakura H, Oda Y & Fukuyama K (1997) Binding mode of benzhydroxamic acid to Arthromyces ramosus peroxidase shown by X-ray crystallographic analysis of the complex at 1.6 A resolution. FEBS Lett 412, 107110.
  • 2
    Tsukamoto K, Itakura H, Sato K, Fukuyama K, Miura S, Takahashi S, Ikezawa H & Hosoya T (1999) Binding of salicylhydroxamic acid and several aromatic donor molecules to Arthromyces ramosus peroxidase, investigated by X-ray crystallography, optical difference spectroscopy, NMR relaxation, molecular dynamics, and kinetics. Biochemistry 38, 1255812568.
  • 3
    Henriksen A, Schuller DJ, Meno K, Welinder KG, Smith AT & Gajhede M (1998) Structural interactions between horseradish peroxidase C and the substrate benzhydroxamic acid determined by X-ray crystallography. Biochemistry 37, 80548060.
  • 4
    Gumiero A, Murphy EJ, Metcalfe CL, Moody PCE & Raven EL (2010) An analysis of substrate binding interactions in the heme peroxidase enzymes: a structural perspective. Arch Biochem Biophys 500, 1320.
  • 5
    Ator MA, David SK & Ortiz de Montellano PR (1987) Structure and catalytic mechanism of horseradish peroxidase. J Biol Chem 262, 1495414960.
  • 6
    Ator MA & Ortiz de Montellano PR (1987) Protein control of prosthetic heme reactivity. J Biol Chem 262, 15421551.
  • 7
    DePillis GD, Sishta BP, Mauk AG & de Montellano PRO (1991) Small substrates and cytochrome-c are oxidized at different sites of cytochrome-c peroxidase. J Biol Chem 266, 1933419341.
  • 8
    Sharp KH, Mewies M, Moody PCE & Raven EL (2003) Crystal structure of the ascorbate peroxidase–ascorbate complex. Nat Struct Biol 10, 303307.
  • 9
    Wei CC, Crane BR & Stuehr DJ (2003) Tetrahydrobiopterin radical enzymology. Chem Rev 103, 23652383.
  • 10
    Poulos TL, Li HY, Raman CS & Schuller DJ (2001) Structures of gas-generating heme enzymes: nitric oxide synthase and heme oxygenase. Adv Inorg Chem 51, 243293.
  • 11
    Sundaramoorthy M, Kishi K, Gold MH & Poulos TL (1994) The crystal structure of manganase peroxidase from Phanerochaete crysosporium at 2.06A resolution. J Biol Chem 269, 3275932767.
  • 12
    Sharp KH, Moody PCE, Brown KA & Raven EL (2004) Crystal structure of the ascorbate peroxidase–salicylhydroxamic acid complex. Biochemistry 43, 86448651.
  • 13
    Metcalfe CL, Macdonald IK, Murphy EJ, Brown KA, Raven EL & Moody PCE (2008) The tuberculosis prodrug isoniazid bound to activating peroxidases. J Biol Chem 283, 61936200.
  • 14
    Ortiz de Montellano PR (1992) Catalytic sites of hemeprotein peroxidases. Annu Rev Pharmacol Toxicol 32, 89107.
  • 15
    Ortiz de Montellano PR (1987) Control of the catalytic activity of prosthetic heme by the structure of hemoproteins. Acc Chem Res 20, 289294.
  • 16
    de Ropp JS, Chen Z & Mar GN (1995) Identification of residues in the aromatic substrate binding site of horseradish peroxidase by 1H NMR studies on isozymes. Biochemistry 34, 1347713484.
  • 17
    Smith AT & Veitch NC (1998) Substrate binding and catalysis in heme peroxidases. Curr Opin Chem Biol 2, 269278.
  • 18
    Veitch NC & Smith AT (2001) Horseradish peroxidase. Adv Inorg Chem 51, 107162.
  • 19
    La Mar GN, Hernandez G & de Ropp JS (1992) H NMR investigation of the influence of interacting sites on the dynamics and thermodynamics of substrate and ligand binding to horseradish peroxidase. Biochemistry 31, 91589168.
  • 20
    de Ropp JS, Mandal PK & La Mar GN (1999) Solution 1H NMR investigation of the heme cavity and substrate binding site in cyanide-inhibited horseradish peroxidase. Biochemistry 38, 10771086.
  • 21
    Veitch NC, Williams RJ, Smith AT, Sanders SA, Thorneley RN, Bray RC & Burke JF (1992) Investigation of native and mutant plant peroxidases by NMR spectroscopy. Biochem Soc Trans 20, 114S.
  • 22
    Veitch NC, Williams RJ, Bone NM, Burke JF & Smith AT (1995) Solution characterisation by NMR spectroscopy of two horseradish peroxidase isoenzyme C mutants with alanine replacing either Phe142 or Phe143. Eur J Biochem 233, 650658.
  • 23
    Veitch NC, Gao Y, Smith AT & White CG (1997) Identification of a critical phenylalanine residue in horseradish peroxidase, Phe179, by site-directed mutagenesis and 1H-NMR: implications for complex formation with aromatic donor molecules. Biochemistry 36, 1475114761.
  • 24
    Henriksen A, Smith AT & Gajhede M (1999) The structures of the horseradish peroxidase C–ferulic acid complex and the ternary complex with cyanide suggest how peroxidases oxidise small phenolic substrates. J Biol Chem 274, 3500535011.
  • 25
    Singh AK, Singh N, Sharma S, Shin K, Takase M, Kaur P, Srinivasan A & Singh TP (2009) Inhibition of lactoperoxidase by its own catalytic product: crystal structure of the hypothiocyanate-inhibited bovine lactoperoxidase at 2.3-A resolution. Biophys J 96, 646654.
  • 26
    Singh AK, Singh N, Sinha M, Bhushan A, Kaur P, Srinivasan A, Sharma S & Singh TP (2009) Binding modes of aromatic ligands to mammalian heme peroxidases with associated functional implications: crystal structures of lactoperoxidase complexes with acetylsalicylic acid, salicylhydroxamic acid, and benzylhydroxamic acid. J Biol Chem 284, 2031120318.
  • 27
    Singh AK, Kumar RP, Pandey N, Singh N, Sinha M, Bhushan A, Kaur P, Sharma S & Singh TP (2010) Mode of binding of the tuberculosis prodrug isoniazid to heme peroxidases: binding studies and crystal structure of bovine lactoperoxidase with isoniazid at 2.7 angstrom resolution. J Biol Chem 285, 15691576.
  • 28
    Miller VP, DePillis GD, Ferrer JC, Mauk AG & Ortiz de Montellano PR (1992) Monooxygenase activity of cytochrome c peroxidase. J Biol Chem 267, 89368942.
  • 29
    Roe JA & Goodin DB (1993) Enhanced oxidation of aniline derivatives by two mutants of cytochrome c peroxidase at tryptophan 51. J Biol Chem 268, 2003720045.
  • 30
    Wilcox SK, Jensen GM, Fitzgerald MM, McRee DE & Goodin DB (1996) Altering substrate specificity at the heme edge of cytochrome c peroxidase. Biochemistry 35, 48584866.
  • 31
    Brenk R, Vetter SW, Boyce SE, Goodin DB & Shoichet BK (2006) Probing molecular docking in a charged model binding site. J Mol Biol 357, 14491470.
  • 32
    Murphy EJ, Metcalfe CL, Basran J, Moody PC & Raven EL (2008) Engineering the substrate specificity and reactivity of a heme protein: creation of an ascorbate binding site in cytochrome c peroxidase. Biochemistry 47, 1393313941.
  • 33
    Nelson DP & Kiesow LA (1972) Enthalpy of decomposition of hydrogen peroxide by catalase at 25 degrees C (with molar extinction coefficients of H2O2 solutions in the UV). Anal Biochem 49, 474478.
  • 34
    Fishel LA, Villafranca JE, Mauro JM & Kraut J (1987) Yeast cytochrome-c peroxidase – mutagenesis and expression in Escherichia coli show tryptophan-51 is not the radical site in compound-I. Biochemistry 26, 351360.
  • 35
    Antonini M & Brunori E (1971) Hemogloblin and Myoglobin and their Reactions with Ligands. North Holland, Amsterdam, London.
  • 36
    Leslie AGW (1992) Joint CCP4 + ESF-EAMCB Newsletter on Protein Crystallography, No. 26 .
  • 37
    Bailey S (1994) The Ccp4 Suite – programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50, 760763.
  • 38
    Finzel BC, Poulos TL & Kraut J (1984) Crystal structure of yeast cytochrome-c peroxidase refined at 1.7-A resolution. J Biol Chem 259, 30273036.
  • 39
    Murshudov GN, Vagin AA & Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53, 240255.
  • 40
    Emsley P & Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 21262132.
  • 41
    DeLano WL (2002) The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA.
  • 42
    Lad L, Mewies M, Basran J, Scrutton NS & Raven EL (2002) Role of histidine 42 in ascorbate peroxidase – kinetic analysis of the H42A and H42E variants. Eur J Biochem 269, 31823192.