SEARCH

SEARCH BY CITATION

References

  • 1
    Russell DW (1992) Cholesterol biosynthesis and metabolism. Cardiovasc Drugs Ther 6, 103110.
  • 2
    Monte MJ, Marin JJ, Antelo A & Vazquez-Tato J (2009) Bile acids: chemistry, physiology, and pathophysiology. World J Gastroenterol 15, 804816.
  • 3
    Hafner M, Rezen T & Rozman D (2011) Regulation of hepatic cytochromes p450 by lipids and cholesterol. Curr Drug Metab 12, 173185.
  • 4
    Stromstedt M, Rozman D & Waterman MR (1996) The ubiquitously expressed human CYP51 encodes lanosterol 14 alpha-demethylase, a cytochrome P450 whose expression is regulated by oxysterols. Arch Biochem Biophys 329, 7381.
  • 5
    Duane WC & Javitt NB (1999) 27-hydroxycholesterol: production rates in normal human subjects. J Lipid Res 40, 11941199.
  • 6
    Axelson M & Sjovall J (1990) Potential bile acid precursors in plasma – possible indicators of biosynthetic pathways to cholic and chenodeoxycholic acids in man. J Steroid Biochem 36, 631640.
  • 7
    Beigneux A, Hofmann AF & Young SG (2002) Human CYP7A1 deficiency: progress and enigmas. J Clin Invest 110, 2931.
  • 8
    Lund EG, Guileyardo JM & Russell DW (1999) cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc Natl Acad Sci USA 96, 72387243.
  • 9
    Edwards PA & Ericsson J (1998) Signaling molecules derived from the cholesterol biosynthetic pathway: mechanisms of action and possible roles in human disease. Curr Opin Lipidol 9, 433440.
  • 10
    Edwards PA, Kennedy MA & Mak PA (2002) LXRs; oxysterol-activated nuclear receptors that regulate genes controlling lipid homeostasis. Vascul Pharmacol 38, 249256.
  • 11
    Rezen T, Debeljak N, Kordis D & Rozman D (2004) New aspects on lanosterol 14alpha-demethylase and cytochrome P450 evolution: lanosterol/cycloartenol diversification and lateral transfer. J Mol Evol 59, 5158.
  • 12
    Rozman D & Waterman MR (1998) Lanosterol 14alpha-demethylase (CYP51) and spermatogenesis. Drug Metab Dispos 26, 11991201.
  • 13
    Tacer KF, Haugen TB, Baltsen M, Debeljak N & Rozman D (2002) Tissue-specific transcriptional regulation of the cholesterol biosynthetic pathway leads to accumulation of testis meiosis-activating sterol (T-MAS). J Lipid Res 43, 8289.
  • 14
    Rozman D, Seliskar M, Cotman M & Fink M (2005) Pre-cholesterol precursors in gametogenesis. Mol Cell Endocrinol 234, 4756.
  • 15
    Seliskar M & Rozman D (2007) Mammalian cytochromes P450 – importance of tissue specificity. Biochim Biophys Acta 1770, 458466.
  • 16
    Fink M, Spaninger K, Prosenc U & Rozman D (2008) High-fat medium and circadian transcription factors (cryptochrome and clock) contribute to the regulation of cholesterogenic Cyp51 and Hmgcr genes in mouse embryonic fibroblasts. Acta Chim Slov 55, 8592.
  • 17
    Rozman D, Fink M, Fimia GM, Sassone-Corsi P & Waterman MR (1999) Cyclic adenosine 3′,5′-monophosphate(cAMP)/cAMP-responsive element modulator (CREM)-dependent regulation of cholesterogenic lanosterol 14alpha-demethylase (CYP51) in spermatids. Mol Endocrinol 13, 19511962.
  • 18
    Halder SK, Fink M, Waterman MR & Rozman D (2002) A cAMP-responsive element binding site is essential for sterol regulation of the human lanosterol 14 alpha-demethylase gene (CYP51). Mol Endocrinol 16, 18531863.
  • 19
    Fink M, Acimovic J, Rezen T, Tansek N & Rozman D (2005) Cholesterogenic lanosterol 14alpha-demethylase (CYP51) is an immediate early response gene. Endocrinology 146, 53215331.
  • 20
    Acimovic J, Fink M, Pompon D, Bjorkhem I, Hirayama J, Sassone-Corsi P, Golicnik M & Rozman D (2008) CREM modulates the circadian expression of CYP51, HMGCR and cholesterogenesis in the liver. Biochem Biophys Res Commun 376, 206210.
  • 21
    Horvat S, McWhir J & Rozman D (2011) Defects in cholesterol synthesis genes in mouse and in humans: lessons for drug development and safer treatments. Drug Metab Rev 43, 6990.
  • 22
    Debeljak N, Fink M & Rozman D (2003) Many facets of mammalian lanosterol 14alpha-demethylase from the evolutionarily conserved cytochrome P450 family CYP51. Arch Biochem Biophys 409, 159171.
  • 23
    Keber R, Motaln H, Wagner KD, Debeljak N, Rassoulzadegan M, Acimovic J, Rozman D & Horvat S (2011) Mouse knockout of the cholesterogenic cytochrome P450 Lanosterol 14{alpha}-demethylase (Cyp51) resembles Antley–Bixler syndrome. J Biol Chem 286, 2908629097.
  • 24
    Porter FD & Herman GE (2011) Malformation syndromes caused by disorders of cholesterol synthesis. J Lipid Res 52, 634.
  • 25
    Rozman D & Monostory K (2010) Perspectives of the non-statin hypolipidemic agents. Pharmacol Ther 127, 1940.
  • 26
    Shen AL, O’Leary KA & Kasper CB (2002) Association of multiple developmental defects and embryonic lethality with loss of microsomal NADPH-cytochrome P450 oxidoreductase. J Biol Chem 277, 65366541.
  • 27
    Otto DM, Henderson CJ, Carrie D, Davey M, Gundersen TE, Blomhoff R, Adams RH, Tickle C & Wolf CR (2003) Identification of novel roles of the cytochrome p450 system in early embryogenesis: effects on vasculogenesis and retinoic acid homeostasis. Mol Cell Biol 23, 61036116.
  • 28
    Schmidt K, Hughes C, Chudek JA, Goodyear SR, Aspden RM, Talbot R, Gundersen TE, Blomhoff R, Henderson C, Wolf CR et al. (2009) Cholesterol metabolism: the main pathway acting downstream of cytochrome P450 oxidoreductase in skeletal development of the limb. Mol Cell Biol 29, 27162729.
  • 29
    Henderson CJ, Otto DM, Carrie D, Magnuson MA, McLaren AW, Rosewell I & Wolf CR (2003) Inactivation of the hepatic cytochrome P450 system by conditional deletion of hepatic cytochrome P450 reductase. J Biol Chem 278, 1348013486.
  • 30
    Gu J, Weng Y, Zhang QY, Cui H, Behr M, Wu L, Yang W, Zhang L & Ding X (2003) Liver-specific deletion of the NADPH-cytochrome P450 reductase gene: impact on plasma cholesterol homeostasis and the function and regulation of microsomal cytochrome P450 and heme oxygenase. J Biol Chem 278, 2589525901.
  • 31
    Wang XJ, Chamberlain M, Vassieva O, Henderson CJ & Wolf CR (2005) Relationship between hepatic phenotype and changes in gene expression in cytochrome P450 reductase (POR) null mice. Biochem J 388, 857867.
  • 32
    Kelley RI, Kratz LE, Glaser RL, Netzloff ML, Wolf LM & Jabs EW (2002) Abnormal sterol metabolism in a patient with Antley–Bixler syndrome and ambiguous genitalia. Am J Med Genet 110, 95102.
  • 33
    Fluck CE, Tajima T, Pandey AV, Arlt W, Okuhara K, Verge CF, Jabs EW, Mendonca BB, Fujieda K & Miller WL (2004) Mutant P450 oxidoreductase causes disordered steroidogenesis with and without Antley–Bixler syndrome. Nat Genet 36, 228230.
  • 34
    Haniu M, McManus ME, Birkett DJ, Lee TD & Shively JE (1989) Structural and functional analysis of NADPH-cytochrome P-450 reductase from human liver: complete sequence of human enzyme and NADPH-binding sites. Biochemistry 28, 86398645.
  • 35
    Fukami M, Horikawa R, Nagai T, Tanaka T, Naiki Y, Sato N, Okuyama T, Nakai H, Soneda S, Tachibana K et al. (2005) Cytochrome P450 oxidoreductase gene mutations and Antley–Bixler syndrome with abnormal genitalia and/or impaired steroidogenesis: molecular and clinical studies in 10 patients. J Clin Endocrinol Metab 90, 414426.
  • 36
    Arlt W (2007) P450 oxidoreductase deficiency and Antley–Bixler syndrome. Rev Endocr Metab Disord 8, 301307.
  • 37
    Rozman D, Stromstedt M, Tsui LC, Scherer SW & Waterman MR (1996) Structure and mapping of the human lanosterol 14alpha-demethylase gene (CYP51) encoding the cytochrome P450 involved in cholesterol biosynthesis; comparison of exon/intron organization with other mammalian and fungal CYP genes. Genomics 38, 371381.
  • 38
    Ma D, Feitosa MF, Wilk JB, Laramie JM, Yu K, Leiendecker-Foster C, Myers RH, Province MA & Borecki IB (2009) Leptin is associated with blood pressure and hypertension in women from the National Heart, Lung, and Blood Institute Family Heart Study. Hypertension 53, 473479.
  • 39
    Charlesworth JC, Peralta JM, Drigalenko E, Goring HH, Almasy L, Dyer TD & Blangero J (2009) Toward the identification of causal genes in complex diseases: a gene-centric joint test of significance combining genomic and transcriptomic data. BMC Proc 3(Suppl 7), S92.
  • 40
    Russell DW (2003) The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem 72, 137174.
  • 41
    Russell DW & Setchell KD (1992) Bile acid biosynthesis. Biochemistry 31, 47374749.
  • 42
    Ishibashi S, Schwarz M, Frykman PK, Herz J & Russell DW (1996) Disruption of cholesterol 7alpha-hydroxylase gene in mice. I. Postnatal lethality reversed by bile acid and vitamin supplementation. J Biol Chem 271, 1801718023.
  • 43
    Schwarz M, Lund EG, Setchell KD, Kayden HJ, Zerwekh JE, Bjorkhem I, Herz J & Russell DW (1996) Disruption of cholesterol 7alpha-hydroxylase gene in mice. II. Bile acid deficiency is overcome by induction of oxysterol 7alpha-hydroxylase. J Biol Chem 271, 1802418031.
  • 44
    Schwarz M, Russell DW, Dietschy JM & Turley SD (1998) Marked reduction in bile acid synthesis in cholesterol 7alpha-hydroxylase-deficient mice does not lead to diminished tissue cholesterol turnover or to hypercholesterolemia. J Lipid Res 39, 18331843.
  • 45
    Schwarz M, Russell DW, Dietschy JM & Turley SD (2001) Alternate pathways of bile acid synthesis in the cholesterol 7alpha-hydroxylase knockout mouse are not upregulated by either cholesterol or cholestyramine feeding. J Lipid Res 42, 15941603.
  • 46
    Erickson SK, Lear SR, Deane S, Dubrac S, Huling SL, Nguyen L, Bollineni JS, Shefer S, Hyogo H, Cohen DE et al. (2003) Hypercholesterolemia and changes in lipid and bile acid metabolism in male and female cyp7A1-deficient mice. J Lipid Res 44, 10011009.
  • 47
    Spady DK, Cuthbert JA, Willard MN & Meidell RS (1998) Overexpression of cholesterol 7alpha-hydroxylase (CYP7A) in mice lacking the low density lipoprotein (LDL) receptor gene. LDL transport and plasma LDL concentrations are reduced. J Biol Chem 273, 126132.
  • 48
    Osono Y, Woollett LA, Herz J & Dietschy JM (1995) Role of the low density lipoprotein receptor in the flux of cholesterol through the plasma and across the tissues of the mouse. J Clin Invest 95, 11241132.
  • 49
    Scaldaferri F, Pizzoferrato M, Ponziani FR, Gasbarrini G & Gasbarrini A (2011) Use and indications of cholestyramine and bile acid sequestrants. Intern Emerg Med doi:10.1007/s11739-011-0653-0.
  • 50
    Ratliff EP, Gutierrez A & Davis RA (2006) Transgenic expression of CYP7A1 in LDL receptor-deficient mice blocks diet-induced hypercholesterolemia. J Lipid Res 47, 15131520.
  • 51
    Miyake JH, Doung XD, Strauss W, Moore GL, Castellani LW, Curtiss LK, Taylor JM & Davis RA (2001) Increased production of apolipoprotein B-containing lipoproteins in the absence of hyperlipidemia in transgenic mice expressing cholesterol 7alpha-hydroxylase. J Biol Chem 276, 2330423311.
  • 52
    Miyake JH, Duong-Polk XT, Taylor JM, Du EZ, Castellani LW, Lusis AJ & Davis RA (2002) Transgenic expression of cholesterol-7-alpha-hydroxylase prevents atherosclerosis in C57BL/6J mice. Arterioscler Thromb Vasc Biol 22, 121126.
  • 53
    Li T, Owsley E, Matozel M, Hsu P, Novak CM & Chiang JY (2010) Transgenic expression of cholesterol 7alpha-hydroxylase in the liver prevents high-fat diet-induced obesity and insulin resistance in mice. Hepatology 52, 678690.
  • 54
    Li T, Matozel M, Boehme S, Kong B, Nilsson LM, Guo G, Ellis E & Chiang JY (2011) Overexpression of cholesterol 7alpha-hydroxylase promotes hepatic bile acid synthesis and secretion and maintains cholesterol homeostasis. Hepatology 53, 9961006.
  • 55
    Pullinger CR, Eng C, Salen G, Shefer S, Batta AK, Erickson SK, Verhagen A, Rivera CR, Mulvihill SJ, Malloy MJ et al. (2002) Human cholesterol 7alpha-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. J Clin Invest 110, 109117.
  • 56
    Nakamoto K, Wang S, Jenison RD, Guo GL, Klaassen CD, Wan YJ & Zhong XB (2006) Linkage disequilibrium blocks, haplotype structure, and htSNPs of human CYP7A1 gene. BMC Genet 7, 29.
  • 57
    Wang J, Freeman DJ, Grundy SM, Levine DM, Guerra R & Cohen JC (1998) Linkage between cholesterol 7alpha-hydroxylase and high plasma low-density lipoprotein cholesterol concentrations. J Clin Invest 101, 12831291.
  • 58
    Jiang ZY, Han TQ, Suo GJ, Feng DX, Chen S, Cai XX, Jiang ZH, Shang J, Zhang Y, Jiang Y et al. (2004) Polymorphisms at cholesterol 7alpha-hydroxylase, apolipoproteins B and E and low density lipoprotein receptor genes in patients with gallbladder stone disease. World J Gastroenterol 10, 15081512.
  • 59
    Kajinami K, Brousseau ME, Ordovas JM & Schaefer EJ (2004) Interactions between common genetic polymorphisms in ABCG5/G8 and CYP7A1 on LDL cholesterol-lowering response to atorvastatin. Atherosclerosis 175, 287293.
  • 60
    De Castro-Oros I, Pampin S, Cofan M, Mozas P, Pinto X, Salas-Salvado J, Rodriguez-Rey JC, Ros E, Civeira F & Pocovi M (2011) Promoter variant -204A > C of the cholesterol 7alpha-hydroxylase gene: association with response to plant sterols in humans and increased transcriptional activity in transfected HepG2 cells. Clin Nutr 30, 239246.
  • 61
    Hofman MK, Princen HM, Zwinderman AH & Jukema JW (2005) Genetic variation in the rate-limiting enzyme in cholesterol catabolism (cholesterol 7alpha-hydroxylase) influences the progression of atherosclerosis and risk of new clinical events. Clin Sci (Lond) 108, 539545.
  • 62
    Hagiwara T, Kono S, Yin G, Toyomura K, Nagano J, Mizoue T, Mibu R, Tanaka M, Kakeji Y, Maehara Y et al. (2005) Genetic polymorphism in cytochrome P450 7A1 and risk of colorectal cancer: the Fukuoka Colorectal Cancer Study. Cancer Res 65, 29792982.
  • 63
    Kim HJ, Park HY, Kim E, Lee KS, Kim KK, Choi BO, Kim SM, Bae JS, Lee SO, Chun JY et al. (2010) Common CYP7A1 promoter polymorphism associated with risk of neuromyelitis optica. Neurobiol Dis 37, 349355.
  • 64
    Li-Hawkins J, Gafvels M, Olin M, Lund EG, Andersson U, Schuster G, Bjorkhem I, Russell DW & Eggertsen G (2002) Cholic acid mediates negative feedback regulation of bile acid synthesis in mice. J Clin Invest 110, 11911200.
  • 65
    Mahowald TA, Matschiner JT, Hsia SL, Doisy EA Jr, Elliott WH & Doisy EA (1957) Bile acids. III. Acid I; the principal bile acid in urine of surgically jaundiced rats. J Biol Chem 225, 795802.
  • 66
    Murphy C, Parini P, Wang J, Bjorkhem I, Eggertsen G & Gafvels M (2005) Cholic acid as key regulator of cholesterol synthesis, intestinal absorption and hepatic storage in mice. Biochim Biophys Acta 1735, 167175.
  • 67
    Wang J, Einarsson C, Murphy C, Parini P, Bjorkhem I, Gafvels M & Eggertsen G (2006) Studies on LXR- and FXR-mediated effects on cholesterol homeostasis in normal and cholic acid-depleted mice. J Lipid Res 47, 421430.
  • 68
    Meir KS & Leitersdorf E (2004) Atherosclerosis in the apolipoprotein-E-deficient mouse: a decade of progress. Arterioscler Thromb Vasc Biol 24, 10061014.
  • 69
    Slatis K, Gafvels M, Kannisto K, Ovchinnikova O, Paulsson-Berne G, Parini P, Jiang ZY & Eggertsen G (2010) Abolished synthesis of cholic acid reduces atherosclerotic development in apolipoprotein E knockout mice. J Lipid Res 51, 32893298.
  • 70
    Kerr TA, Saeki S, Schneider M, Schaefer K, Berdy S, Redder T, Shan B, Russell DW & Schwarz M (2002) Loss of nuclear receptor SHP impairs but does not eliminate negative feedback regulation of bile acid synthesis. Dev Cell 2, 713720.
  • 71
    Wang L, Lee YK, Bundman D, Han Y, Thevananther S, Kim CS, Chua SS, Wei P, Heyman RA, Karin M et al. (2002) Redundant pathways for negative feedback regulation of bile acid production. Dev Cell 2, 721731.
  • 72
    Ellis E, Axelson M, Abrahamsson A, Eggertsen G, Thorne A, Nowak G, Ericzon BG, Bjorkhem I & Einarsson C (2003) Feedback regulation of bile acid synthesis in primary human hepatocytes: evidence that CDCA is the strongest inhibitor. Hepatology 38, 930938.
  • 73
    Gafvels M, Olin M, Chowdhary BP, Raudsepp T, Andersson U, Persson B, Jansson M, Bjorkhem I & Eggertsen G (1999) Structure and chromosomal assignment of the sterol 12alpha-hydroxylase gene (CYP8B1) in human and mouse: eukaryotic cytochrome P-450 gene devoid of introns. Genomics 56, 184196.
  • 74
    Wang J, Greene S, Eriksson LC, Rozell B, Reihner E, Einarsson C, Eggertsen G & Gafvels M (2005) Human sterol 12a-hydroxylase (CYP8B1) is mainly expressed in hepatocytes in a homogenous pattern. Histochem Cell Biol 123, 441446.
  • 75
    Hebanowska A (2010) [Bile acid biosynthesis and its regulation]. Postepy Hig Med Dosw (Online) 64, 544554.
  • 76
    Abrahamsson A, Gafvels M, Reihner E, Bjorkhem I, Einarsson C & Eggertsen G (2005) Polymorphism in the coding part of the sterol 12alpha-hydroxylase gene does not explain the marked differences in the ratio of cholic acid and chenodeoxycholic acid in human bile. Scand J Clin Lab Invest 65, 595600.
  • 77
    Bjorkhem I & Hansson M (2010) Cerebrotendinous xanthomatosis: an inborn error in bile acid synthesis with defined mutations but still a challenge. Biochem Biophys Res Commun 396, 4649.
  • 78
    Babiker A, Andersson O, Lund E, Xiu RJ, Deeb S, Reshef A, Leitersdorf E, Diczfalusy U & Bjorkhem I (1997) Elimination of cholesterol in macrophages and endothelial cells by the sterol 27-hydroxylase mechanism. Comparison with high density lipoprotein-mediated reverse cholesterol transport. J Biol Chem 272, 2625326261.
  • 79
    Fu X, Menke JG, Chen Y, Zhou G, MacNaul KL, Wright SD, Sparrow CP & Lund EG (2001) 27-hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterol-loaded cells. J Biol Chem 276, 3837838387.
  • 80
    Bjorkhem I & Leitersdorf E (2000) Sterol 27-hydroxylase deficiency: a rare cause of xanthomas in normocholesterolemic humans. Trends Endocrinol Metab 11, 180183.
  • 81
    Rosen H, Reshef A, Maeda N, Lippoldt A, Shpizen S, Triger L, Eggertsen G, Bjorkhem I & Leitersdorf E (1998) Markedly reduced bile acid synthesis but maintained levels of cholesterol and vitamin D metabolites in mice with disrupted sterol 27-hydroxylase gene. J Biol Chem 273, 1480514812.
  • 82
    Honda A, Salen G, Matsuzaki Y, Batta AK, Xu G, Leitersdorf E, Tint GS, Erickson SK, Tanaka N & Shefer S (2001) Differences in hepatic levels of intermediates in bile acid biosynthesis between Cyp27(–/–) mice and CTX. J Lipid Res 42, 291300.
  • 83
    Honda A, Salen G, Matsuzaki Y, Batta AK, Xu G, Leitersdorf E, Tint GS, Erickson SK, Tanaka N & Shefer S (2001) Side chain hydroxylations in bile acid biosynthesis catalyzed by CYP3A are markedly up-regulated in Cyp27–/– mice but not in cerebrotendinous xanthomatosis. J Biol Chem 276, 3457934585.
  • 84
    Lyons MA, Maeda N & Brown AJ (2002) Paradoxical enhancement of hepatic metabolism of 7-ketocholesterol in sterol 27-hydroxylase-deficient mice. Biochim Biophys Acta 1581, 119126.
  • 85
    Furster C & Wikvall K (1999) Identification of CYP3A4 as the major enzyme responsible for 25-hydroxylation of 5beta-cholestane-3alpha,7alpha,12alpha-triol in human liver microsomes. Biochim Biophys Acta 1437, 4652.
  • 86
    Bavner A, Shafaati M, Hansson M, Olin M, Shpitzen S, Meiner V, Leitersdorf E & Bjorkhem I (2010) On the mechanism of accumulation of cholestanol in the brain of mice with a disruption of sterol 27-hydroxylase. J Lipid Res 51, 27222730.
  • 87
    Repa JJ, Lund EG, Horton JD, Leitersdorf E, Russell DW, Dietschy JM & Turley SD (2000) Disruption of the sterol 27-hydroxylase gene in mice results in hepatomegaly and hypertriglyceridemia. Reversal by cholic acid feeding. J Biol Chem 275, 3968539692.
  • 88
    Dubrac S, Lear SR, Ananthanarayanan M, Balasubramaniyan N, Bollineni J, Shefer S, Hyogo H, Cohen DE, Blanche PJ, Krauss RM et al. (2005) Role of CYP27A in cholesterol and bile acid metabolism. J Lipid Res 46, 7685.
  • 89
    Meir K, Kitsberg D, Alkalay I, Szafer F, Rosen H, Shpitzen S, Avi LB, Staels B, Fievet C, Meiner V et al. (2002) Human sterol 27-hydroxylase (CYP27) overexpressor transgenic mouse model. Evidence against 27-hydroxycholesterol as a critical regulator of cholesterol homeostasis. J Biol Chem 277, 3403634041.
  • 90
    Cali JJ, Hsieh CL, Francke U & Russell DW (1991) Mutations in the bile acid biosynthetic enzyme sterol 27-hydroxylase underlie cerebrotendinous xanthomatosis. J Biol Chem 266, 77797783.
  • 91
    van Bogaert L, Scherer HJ, Froelich A & Epstein E (1937) Une deuxieme observation de cholesterinose tendineuse symetrique avec symptomes cerebraux. Ann Med Interne 42, 69101.
  • 92
    Bjorkhem I, Boberg KM & Leitersdorf E (2001) Inborn errors in bile acid biosynthesis and storage of sterols other than cholesterol. In The Metabolic Bases of Inherited Diseases (Valle D, ed.), pp. 29612988. McGraw Hill Publishing Co, New York, NY.
  • 93
    Gallus GN, Dotti MT & Federico A (2006) Clinical and molecular diagnosis of cerebrotendinous xanthomatosis with a review of the mutations in the CYP27A1 gene. Neurol Sci 27, 143149.
  • 94
    Stiles AR, McDonald JG, Bauman DR & Russell DW (2009) CYP7B1: one cytochrome P450, two human genetic diseases, and multiple physiological functions. J Biol Chem 284, 2848528489.
  • 95
    Rose K, Allan A, Gauldie S, Stapleton G, Dobbie L, Dott K, Martin C, Wang L, Hedlund E, Seckl JR et al. (2001) Neurosteroid hydroxylase CYP7B: vivid reporter activity in dentate gyrus of gene-targeted mice and abolition of a widespread pathway of steroid and oxysterol hydroxylation. J Biol Chem 276, 2393723944.
  • 96
    Omoto Y, Lathe R, Warner M & Gustafsson JA (2005) Early onset of puberty and early ovarian failure in CYP7B1 knockout mice. Proc Natl Acad Sci USA 102, 28142819.
  • 97
    Li-Hawkins J, Lund EG, Turley SD & Russell DW (2000) Disruption of the oxysterol 7alpha-hydroxylase gene in mice. J Biol Chem 275, 1653616542.
  • 98
    Chiang JY (2004) Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms. J Hepatol 40, 539551.
  • 99
    Setchell KD, Schwarz M, O’Connell NC, Lund EG, Davis DL, Lathe R, Thompson HR, Weslie Tyson R, Sokol RJ & Russell DW (1998) Identification of a new inborn error in bile acid synthesis: mutation of the oxysterol 7alpha-hydroxylase gene causes severe neonatal liver disease. J Clin Invest 102, 16901703.
  • 100
    Li-Hawkins J, Lund EG, Bronson AD & Russell DW (2000) Expression cloning of an oxysterol 7alpha-hydroxylase selective for 24-hydroxycholesterol. J Biol Chem 275, 1654316549.
  • 101
    Rose KA, Stapleton G, Dott K, Kieny MP, Best R, Schwarz M, Russell DW, Bjorkhem I, Seckl J & Lathe R (1997) Cyp7b, a novel brain cytochrome P450, catalyzes the synthesis of neurosteroids 7alpha-hydroxy dehydroepiandrosterone and 7alpha-hydroxy pregnenolone. Proc Natl Acad Sci USA 94, 49254930.
  • 102
    Martin C, Ross M, Chapman KE, Andrew R, Bollina P, Seckl JR & Habib FK (2004) CYP7B generates a selective estrogen receptor beta agonist in human prostate. J Clin Endocrinol Metab 89, 29282935.
  • 103
    Pettersson H, Holmberg L, Axelson M & Norlin M (2008) CYP7B1-mediated metabolism of dehydroepiandrosterone and 5alpha-androstane-3beta,17beta-diol – potential role(s) for estrogen signaling. Febs J 275, 17781789.
  • 104
    Umetani M, Domoto H, Gormley AK, Yuhanna IS, Cummins CL, Javitt NB, Korach KS, Shaul PW & Mangelsdorf DJ (2007) 27-Hydroxycholesterol is an endogenous SERM that inhibits the cardiovascular effects of estrogen. Nat Med 13, 11851192.
  • 105
    Umetani M & Shaul PW (2011) 27-Hydroxycholesterol: the first identified endogenous SERM. Trends Endocrinol Metab 22, 130135.
  • 106
    DuSell CD, Umetani M, Shaul PW, Mangelsdorf DJ & McDonnell DP (2008) 27-hydroxycholesterol is an endogenous selective estrogen receptor modulator. Mol Endocrinol 22, 6577.
  • 107
    Bauman DR, Bitmansour AD, McDonald JG, Thompson BM, Liang G & Russell DW (2009) 25-Hydroxycholesterol secreted by macrophages in response to Toll-like receptor activation suppresses immunoglobulin A production. Proc Natl Acad Sci USA 106, 1676416769.
  • 108
    Steckelbroeck S, Watzka M, Lutjohann D, Makiola P, Nassen A, Hans VH, Clusmann H, Reissinger A, Ludwig M, Siekmann L et al. (2002) Characterization of the dehydroepiandrosterone (DHEA) metabolism via oxysterol 7alpha-hydroxylase and 17-ketosteroid reductase activity in the human brain. J Neurochem 83, 713726.
  • 109
    Ueki I, Kimura A, Nishiyori A, Chen HL, Takei H, Nittono H & Kurosawa T (2008) Neonatal cholestatic liver disease in an Asian patient with a homozygous mutation in the oxysterol 7alpha-hydroxylase gene. J Pediatr Gastroenterol Nutr 46, 465469.
  • 110
    Salinas S, Proukakis C, Crosby A & Warner TT (2008) Hereditary spastic paraplegia: clinical features and pathogenetic mechanisms. Lancet Neurol 7, 11271138.
  • 111
    Cao L, Fei QZ, Tang WG, Liu JR, Zheng L, Xiao Q, He SB, Fu Y & Chen SD (2011) Novel mutations in the CYP7B1 gene cause hereditary spastic paraplegia. Mov Disord 26, 13541356.
  • 112
    Lund EG, Xie C, Kotti T, Turley SD, Dietschy JM & Russell DW (2003) Knockout of the cholesterol 24-hydroxylase gene in mice reveals a brain-specific mechanism of cholesterol turnover. J Biol Chem 278, 2298022988.
  • 113
    Kotti TJ, Ramirez DM, Pfeiffer BE, Huber KM & Russell DW (2006) Brain cholesterol turnover required for geranylgeraniol production and learning in mice. Proc Natl Acad Sci USA 103, 38693874.
  • 114
    Goldstein JL & Brown MS (1990) Regulation of the mevalonate pathway. Nature 343, 425430.
  • 115
    Xie C, Lund EG, Turley SD, Russell DW & Dietschy JM (2003) Quantitation of two pathways for cholesterol excretion from the brain in normal mice and mice with neurodegeneration. J Lipid Res 44, 17801789.
  • 116
    Ramirez DM, Andersson S & Russell DW (2008) Neuronal expression and subcellular localization of cholesterol 24-hydroxylase in the mouse brain. J Comp Neurol 507, 16761693.
  • 117
    Halford RW & Russell DW (2009) Reduction of cholesterol synthesis in the mouse brain does not affect amyloid formation in Alzheimer’s disease, but does extend lifespan. Proc Natl Acad Sci USA 106, 35023506.
  • 118
    Janowski BA, Grogan MJ, Jones SA, Wisely GB, Kliewer SA, Corey EJ & Mangelsdorf DJ (1999) Structural requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta. Proc Natl Acad Sci USA 96, 266271.
  • 119
    Shafaati M, Olin M, Bavner A, Pettersson H, Rozell B, Meaney S, Parini P & Bjorkhem I (2011) Enhanced production of 24S-hydroxycholesterol is not sufficient to drive liver X receptor target genes in vivo. J Intern Med 270, 377387.
  • 120
    Notkola IL, Sulkava R, Pekkanen J, Erkinjuntti T, Ehnholm C, Kivinen P, Tuomilehto J & Nissinen A (1998) Serum total cholesterol, apolipoprotein E epsilon 4 allele, and Alzheimer’s disease. Neuroepidemiology 17, 1420.
  • 121
    Kivipelto M, Helkala EL, Laakso MP, Hanninen T, Hallikainen M, Alhainen K, Soininen H, Tuomilehto J & Nissinen A (2001) Midlife vascular risk factors and Alzheimer’s disease in later life: longitudinal, population based study. BMJ 322, 14471451.
  • 122
    Garcia AN, Muniz MT, Souza e Silva HR, da Silva HA & Athayde-Junior L (2009) Cyp46 polymorphisms in Alzheimer’s disease: a review. J Mol Neurosci 39, 342345.
  • 123
    Papassotiropoulos A, Streffer JR, Tsolaki M, Schmid S, Thal D, Nicosia F, Iakovidou V, Maddalena A, Lutjohann D, Ghebremedhin E et al. (2003) Increased brain beta-amyloid load, phosphorylated tau, and risk of Alzheimer disease associated with an intronic CYP46 polymorphism. Arch Neurol 60, 2935.
  • 124
    Fernandez Del Pozo V, Alvarez Alvarez M, Fernandez Martinez M, Galdos Alcelay L, Gomez Busto F, Pena JA, Alfonso-Sanchez MA, Zarranz Imirizaldu JJ & de Pancorbo MM (2006) Polymorphism in the cholesterol 24S-hydroxylase gene (CYP46A1) associated with the APOEpsilon3 allele increases the risk of Alzheimer’s disease and of mild cognitive impairment progressing to Alzheimer’s disease. Dement Geriatr Cogn Disord 21, 8187.
  • 125
    Johansson A, Katzov H, Zetterberg H, Feuk L, Johansson B, Bogdanovic N, Andreasen N, Lenhard B, Brookes AJ, Pedersen NL et al. (2004) Variants of CYP46A1 may interact with age and APOE to influence CSF Abeta42 levels in Alzheimer’s disease. Hum Genet 114, 581587.
  • 126
    Ma SL, Tang NL, Lam LC & Chiu HF (2006) Polymorphisms of the cholesterol 24-hydroxylase (CYP46A1) gene and the risk of Alzheimer’s disease in a Chinese population. Int Psychogeriatr 18, 3745.
  • 127
    Fu BY, Ma SL, Tang NL, Tam CW, Lui VW, Chiu HF & Lam LC (2009) Cholesterol 24-hydroxylase (CYP46A1) polymorphisms are associated with faster cognitive deterioration in Chinese older persons: a two-year follow up study. Int J Geriatr Psychiatry 24, 921926.
  • 128
    Kolsch H, Lutjohann D, Jessen F, Popp J, Hentschel F, Kelemen P, Schmitz S, Maier W & Heun R (2009) CYP46A1 variants influence Alzheimer’s disease risk and brain cholesterol metabolism. Eur Psychiatry 24, 183190.
  • 129
    Lefebvre P, Cariou B, Lien F, Kuipers F & Staels B (2009) Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev 89, 147191.
  • 130
    Staudinger JL, Goodwin B, Jones SA, Hawkins-Brown D, MacKenzie KI, LaTour A, Liu Y, Klaassen CD, Brown KK, Reinhard J et al. (2001) The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci USA 98, 33693374.
  • 131
    Kakizaki S, Takizawa D, Tojima H, Horiguchi N, Yamazaki Y & Mori M (2011) Nuclear receptors CAR and PXR; therapeutic targets for cholestatic liver disease. Front Biosci 17, 29883005.