SEARCH

SEARCH BY CITATION

References

  • 1
    Lambert JD, Sang S & Yang CS (2007) Biotransformation of green tea polyphenols and the biological activities of those metabolites. Mol Pharm4, 819825.
  • 2
    Zhang J, Li L, Kim SH, Hagerman AE & Lu J (2009) Anti-cancer, anti-diabetic and other pharmacologic and biological activities of penta-galloyl-glucose. Pharm Res26, 20662080.
  • 3
    Zajácz A, Gyemánt G, Vittori N & Kandra L (2007) Aleppo tannin: structural analysis and salivary amylase inhibition. Carbohydr Res342, 717723.
  • 4
    Bode AM & Dong Z (2003) Signal transduction pathways: targets for green and black tea polyphenols. J Biochem Mol Biol36, 6677.
  • 5
    Ahmad N, Feyes DK, Nieminen AL, Agarwal R & Mukhtar H (1997) Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells. J Natl Cancer Inst89, 18811886.
  • 6
    Khan N, Afaq F, Saleem M, Ahmad N & Mukhtar H (2006) Targeting multiple signaling pathways by green tea polyphenol (–)-epigallocatechin-3-gallate. Cancer Res66, 25002505.
  • 7
    Sah JF, Balasubramanian S, Eckert RL & Rorke EA (2004) Epigallocatechin-3-gallate inhibits epidermal growth factor receptor signaling pathway. Evidence for direct inhibition of ERK1/2 and AKT kinases. J Biol Chem279, 1275512762.
  • 8
    Chai Y, Lee HJ, Shaik AA, Nkhata K, Xing C, Zhang J, Jeong SJ, Kim SH & Lu J (2010) Penta-O-galloyl-beta-d-glucose induces G1 arrest and DNA replicative S-phase arrest independently of P21 cyclin-dependent kinase inhibitor 1A, P27 cyclin-dependent kinase inhibitor 1B and P53 in human breast cancer cells and is orally active against triple-negative xenograft growth. Breast Cancer Res12, R67.
  • 9
    Huh JE, Lee EO, Kim MS, Kang KS, Kim CH, Cha BC, Surh YJ & Kim SH (2005) Penta-O-galloyl-beta-d-glucose suppresses tumor growth via inhibition of angiogenesis and stimulation of apoptosis: roles of cyclooxygenase-2 and mitogen-activated protein kinase pathways. Carcinogenesis26, 14361445.
  • 10
    Li Y, Kim J, Li J, Liu F, Liu X, Himmeldirk K, Ren Y, Wagner TE & Chen X (2005) Natural anti-diabetic compound 1,2,3,4,6-penta-O-galloyl-d-glucopyranose binds to insulin receptor and activates insulin-mediated glucose transport signaling pathway. Biochem Biophys Res Commun336, 430437.
  • 11
    Chen WJ, Chang CY & Lin JK (2003) Induction of G1 phase arrest in MCF human breast cancer cells by pentagalloylglucose through the down-regulation of CDK4 and CDK2 activities and up-regulation of the CDK inhibitors p27(Kip) and p21(Cip). Biochem Pharmacol65, 17771785.
  • 12
    Chen WJ & Lin JK (2004) Induction of G1 arrest and apoptosis in human jurkat T cells by pentagalloylglucose through inhibiting proteasome activity and elevating p27Kip1, p21Cip1/WAF1, and Bax proteins. J Biol Chem279, 1349613505.
  • 13
    Erdélyi K, Kiss A, Bakondi E, Bai P, Szabó C, Gergely P, Erdődi F & Virág L (2005) Gallotannin inhibits the expression of chemokines and inflammatory cytokines in A549 cells. Mol Pharmacol68, 895904.
  • 14
    Kim MH (2008) Protein phosphatase 1 activation and alternative splicing of Bcl-X and Mcl-1 by EGCG + ibuprofen. J Cell Biochem104, 14911499.
  • 15
    Qin J, Chen HG, Yan Q, Deng M, Liu J, Doerge S, Ma W, Dong Z & Li DW (2008) Protein phosphatase-2A is a target of epigallocatechin-3-gallate and modulates p53-Bak apoptotic pathway. Cancer Res68, 41504162.
  • 16
    Umeda D, Yano S, Yamada K & Tachibana H (2008) Green tea polyphenol epigallocatechin-3-gallate signaling pathway through 67-kDa laminin receptor. J Biol Chem283, 30503058.
  • 17
    Hartshorne DJ, Ito M & Erdodi F (2004) Role of protein phosphatase type 1 in contractile functions: myosin phosphatase. J Biol Chem279, 3721137214.
  • 18
    Bollen M, Peti W, Ragusa MJ & Beullens M (2010) The extended PP1 toolkit: designed to create specificity. Trends Biochem Sci35, 450458.
  • 19
    Cohen PT (2002) Protein phosphatase 1 – targeted in many directions. J Cell Sci115, 241256.
  • 20
    Honkanen RE & Golden T (2002) Regulators of serine/threonine protein phosphatases at the dawn of a clinical era?Curr Med Chem9, 20552075.
  • 21
    Sheppeck JE 2nd, Gauss CM & Chamberlin AR (1997) Inhibition of the Ser-Thr phosphatases PP1 and PP2A by naturally occurring toxins. Bioorg Med Chem5, 17391750.
  • 22
    Goldberg J, Huang HB, Kwon YG, Greengard P, Nairn AC & Kuriyan J (1995) Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. Nature376, 745753.
  • 23
    Maynes JT, Bateman KS, Cherney MM, Das AK, Luu HA, Holmes CF & James MN (2001) Crystal structure of the tumor-promoter okadaic acid bound to protein phosphatase-1. J Biol Chem276, 4407844082.
  • 24
    Kita A, Matsunaga S, Takai A, Kataiwa H, Wakimoto T, Fusetani N, Isobe M & Miki K (2002) Crystal structure of the complex between calyculin A and the catalytic subunit of protein phosphatase 1. Structure10, 715724.
  • 25
    Kelker MS, Page R & Peti W (2009) Crystal structures of protein phosphatase-1 bound to nodularin-R and tautomycin: a novel scaffold for structure-based drug design of serine/threonine phosphatase inhibitors. J Mol Biol385, 1121.
  • 26
    Tóth A, Kiss E, Herberg FW, Gergely P, Hartshorne DJ & Erdődi F (2000) Study of the subunit interactions in myosin phosphatase by surface plasmon resonance. Eur J Biochem267, 16871697.
  • 27
    Deaville ER, Green RJ, Mueller-Harvey I, Willoughby I & Frazier RA (2007) Hydrolyzable tannin structures influence relative globular and random coil protein binding strengths. J Agric Food Chem55, 45544561.
  • 28
    Nozaki A, Hori M, Kimura T, Ito H & Hatano T (2009) Interaction of polyphenols with proteins: binding of (–)-epigallocatechin gallate to serum albumin, estimated by induced circular dichroism. Chem Pharm Bull57, 224228.
  • 29
    Gyémánt G, Zajácz A, Bécsi B, Ragunath C, Ramasubbu N, Erdődi F, Batta G & Kandra L (2009) Evidence for pentagalloyl glucose binding to human salivary alpha-amylase through aromatic amino acid residues. Biochim Biophys Acta1794, 291296.
  • 30
    Stenlund P, Frostell-Karlsson A & Karlsson OP (2006) Studies of small molecule interactions with protein phosphatases using biosensor technology. Anal Biochem353, 217225.
  • 31
    Wroblewski K, Muhandiram R, Chakrabartty A & Bennick A (2001) The molecular interaction of human salivary histatins with polyphenolic compounds. Eur J Biochem268, 43844397.
  • 32
    Campos M, Fadden P, Alms G, Qian Z & Haystead TA (1996) Identification of protein phosphatase-1-binding proteins by microcystin-biotin affinity chromatography. J Biol Chem271, 2847828484.
  • 33
    Mayer M & Meyer B (2001) Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc123, 61086117.
  • 34
    Groves P, Kövér KE, Andre S, Bandorowicz-Pikula J, Batta G, Bruix M, Buchet R, Canales A, Canada FJ, Gabius HJ et al. (2007) Temperature dependence of ligand–protein complex formation as reflected by saturation transfer difference NMR experiments. Magn Reson Chem45, 745748.
  • 35
    Mayer M & Meyer B (1999) Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Ed Engl38, 17841788.
  • 36
    Xing Y, Xu Y, Chen Y, Jeffrey PD, Chao Y, Lin Z, Li Z, Strack S, Stock JB & Shi Y (2006) Structure of protein phosphatase 2A core enzyme bound to tumor-inducing toxins. Cell127, 341353.
  • 37
    Hajduk PJ, Meadows RP & Fesik SW (1999) NMR-based screening in drug discovery. Q Rev Biophys32, 211240.
  • 38
    Colby DA, Liu W, Sheppeck JE, Huang HB, Nairn AC & Chamberlin AR (2003) A new model of the tautomycin–PP1 complex that is not analogous to the corresponding okadaic acid structure. Bioorg Med Chem Lett13, 16011605.
  • 39
    Wu H, Qi H, Iwasaki D, Zhu B, Shimoishi Y, Murata Y & Nakamura Y (2009) JNK-dependent NFATc1 pathway positively regulates IL-13 gene expression induced by (–)-epigallocatechin-3-gallate in human basophilic KU812 cells. Free Radic Biol Med47, 10281038.
  • 40
    Saeki K, Kobayashi N, Inazawa Y, Zhang H, Nishitoh H, Ichijo H, Isemura M & Yuo A (2002) Oxidation-triggered c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase pathways for apoptosis in human leukaemic cells stimulated by epigallocatechin-3-gallate (EGCG): a distinct pathway from those of chemically induced and receptor-mediated apoptosis. Biochem J368, 705720.
  • 41
    Wang HJ, Lo WY, Lu TL & Huang H (2010) (–)-Epigallocatechin-3-gallate decreases thrombin/paclitaxel-induced endothelial tissue factor expression via the inhibition of c-Jun terminal NH2 kinase phosphorylation. Biochem Biophys Res Commun391, 716721.
  • 42
    Chung JY, Huang C, Meng X, Dong Z & Yang CS (1999) Inhibition of activator protein 1 activity and cell growth by purified green tea and black tea polyphenols in H-ras-transformed cells: structure–activity relationship and mechanisms involved. Cancer Res59, 46104617.
  • 43
    Erdődi F, Tóth B, Hirano K, Hirano M, Hartshorne DJ & Gergely P (1995) Endothelial thioanhydride inhibits protein phosphatases-1 and -2A in vivo. Am J Physiol269, C1176C1184.
  • 44
    Brautigan DL, Shriner CL & Gruppuso PA (1985) Phosphorylase phosphatase catalytic subunit. Evidence that the Mr = 33,000 enzyme fragment is derived from a native protein of Mr = 70,000. J Biol Chem260, 42954302.
  • 45
    Erdődi F, Csortos C, Sparks L, Murányi A & Gergely P (1992) Purification and characterization of three distinct types of protein phosphatase catalytic subunits in bovine platelets. Arch Biochem Biophys298, 682687.
  • 46
    Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK & Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem19, 16391662.
  • 47
    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS & Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem30, 27852791.
  • 48
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC & Ferrin TE (2004) UCSF chimera – a visualization system for exploratory research and analysis. J Comput Chem25, 16051612.