SEARCH

SEARCH BY CITATION

References

  • 1
    Ingram CJE, Mulcare CA, Itan Y, Thomas MG & Swallow DM (2009) Lactose digestion and the evolutionary genetics of lactase persistence. Hum Genet 124, 579591.
  • 2
    Chen W, Chen H, Xia Y, Zhao J, Tian F & Zhang H (2008) Production, purification and characterization of a potential thermostable galactosidase for milk lactose hydrolysis from Bacillus stearothermophilus. J Dairy Sci 91, 17511758.
  • 3
    Ladero M, Perez MT, Santos A & Garcia-Ochoa F (2003) Hydrolysis of lactose by free and immobilized β-galactosidase from Thermus sp. strain T2. Biotechnol Bioeng 81, 241252.
  • 4
    Torres DMP, Do Pilar F, Goncalves M, Texeira JA & Rodrigues LR (2010) Galacto-oligosaccharides: production, properties, applications, and significance as prebiotics. Comp Rev Food Sci Food Safety 9, 438454.
  • 5
    Macfarlane GT, Steed H & Macfarlane S (2008) Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J Appl Microbiol 1004, 305344.
  • 6
    Roberfroid MB, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, Wolvers D, Watzi B, Szajewska H, Stahl B et al. (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104, S1S63.
  • 7
    Yanahira S, Kobayashi T, Suguri T, Nakakoshi M, Miura S, Ishikawa H & Nakajima I (1995) Formation of oligosaccharides from lactose by Bacillus circulansβ-galactosidase. Biosci Biotechnol Biochem 59, 10211026.
  • 8
    Usui T, Morimoto S, Hayakawa Y, Kawaguchi M, Murata T, Matahira Y & Nishida Y (1996) Regioselectivity of β-d-galactosyl-disaccharide formation using the β-d-galactosidase from Bacillus circulans. Carbohydr Res 285, 2939.
  • 9
    Vetere A & Paoletti S (1998) Separation and characterization of three β-galactosidases from Bacillus circulans. Biochim Biophys Acta 1380, 223231.
  • 10
    Gosling A, Alftrén J, Stevens GW, Barber AR, Kentish SE & Gras SL (2009) Facile pretreatment of Bacillus circulansβ-galactosidase increases the yield of galactosyl oligosaccharides in milk and lactose reaction systems. J Agric Food Chem 57, 1157011574.
  • 11
    Li W, Xiang X, Tang S, Hu B, Tian L, Sun Y, Ye H & Zeng X (2009) Effective enzymatic synthesis of lactosucrose and its analogues by β-d-galactosidase from Bacillus circulans. J Agric Food Chem 57, 39273933.
  • 12
    Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombart V & Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37, D233D238.
  • 13
    Davies G & Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3, 853859.
  • 14
    Gloster TM, Roberts S, Ducros VM-A, Perugino G, Rossi M, Hoos R, Moracci M, Vasella A & Davies GJ (2004) Structural studies of the β-glycosidase from Sulfolobus solfataricus in complex with covalently and noncovantlently bound inhibitors. Biochemistry 43, 61016109.
  • 15
    Juers DH, Jacobson RH, Wigley D, Zhang XJ, Huber RE, Tronrud DE & Matthews BW (2000) High resolution refinement of β-galactosidase in a new crystal form reveals multiple metal-binding sites and provides a structural basis for α-complementation. Protein Sci 9, 16851699.
  • 16
    Skalova T, Dohnalek J, Spiwok V, Lipolova P, Vondrackova E, Petrokova H, Strnad H, Kralova B & Hasek J (2005) Cold-active β-galactosidase from Arthrobacter sp. C2-2 forms compact 660 kDa hexamers: crystal structure at 1.9 Å resolution. J Mol Biol 353, 282294.
  • 17
    Rojas AL, Nagem RAP, Neustroev KN, Arand M, Adamska M, Eneyskaya EV, Kulminskaya AA, Garratt RC, Golubev AM & Polikarpov I (2004) Crystal structures of β-galactosidase from Penicillium sp. and its complex with galactose. J Mol Biol 343, 12811292.
  • 18
    Maksimainen M, Hakulinen N, Kallio JM, Timoharju T, Turunen O & Rouvinen J (2011) Crystal structures of Trichoderma reeseiβ-galactosidase reveal conformational changes in the active site. J Struct Biol 174, 156163.
  • 19
    Hidaka M, Fushinobu S, Ohtsu N, Motoshima H, Matsuzawa H, Shoun H & Wakagi T (2002) Trimeric crystal structure of the glycoside hydrolase family 42 β-galactosidase from Thermus thermophilus A4 and the structure of its complex with galactose. J Mol Biol 322, 7991.
  • 20
    Juers DH, Heightman TD, Vasella A, McCarter JD, Mackenzie L, Withers SG & Matthews BW (2001) A structural view of the action of Escherichia coli (lacZ) β-galactosidase. Biochemistry 40, 1478114794.
  • 21
    Juers DH, Rob B, Dugdale ML, Rahimzadeh N, Giang C, Lee M, Matthews BW & Huber RE (2009) Direct and indirect roles of His-418 in metal binding and in the activity of β-galactosidase (E. coli). Protein Sci 18, 12811292.
  • 22
    Dugdale ML, Vance L, Wheatley RW, Driedger ML, Nibber A, Tran A & Huber RE (2010) Importance of Arg-599 of β-galactosidase (Escherichia coli) as an anchor for the open conformations of Phe-601 and the active-site loop. Biochem Cell Biol 88, 969979.
  • 23
    Fujinami S & Fujisawa M (2010) Industrial applications of alkaliphiles and their enzymes – past, present and future. Environ Technol 31, 845856.
  • 24
    Hakulinen N, Paavilainen S, Korpela T & Rouvinen J (2000) The crystal structure of β-glucosidase from Bacillus circulans sp. alkalophilus: ability to form long polymeric assemblies. J Struct Biol 129, 6979.
  • 25
    Kapetaniou EG, Thanassoulas A, Dubnovitsky PD, Nounesis G & Papageorgiou AC (2006) Effect of pH on the structure and stability of Bacillus circulans ssp. alkalophilos phosphoserine aminotransferase: thermodynamic and crystallographic studies. Proteins 63, 742753.
  • 26
    Krulwich TA, Sachs G & Padan E (2011) Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Microbiol 9, 330343.
  • 27
    Ohtsu N, Motoshima H, Goto K, Tsukasaki F & Matsuzawa H (1998) Thermostable β-galactosidase from an extreme thermophile, Thermus sp. A4: enzyme purification and characterization, and gene cloning and sequencing. Biosci Biotechnol Biochem 62, 15391545.
  • 28
    Matthews BW (1968) Solvent content of protein crystals. J Mol Biol 33, 491497.
  • 29
    Thompson A, Attwood D, Gullikson E, Howells M, Kim K-J, Kirz J, Kortright J, Lindau I, Pianetta P, Robinson A et al. (2001) Section 1.1 Electron binding energies. In X-ray Data Booklet (Thompson AC and Vaughan D ed.), Table 1-1. Lawrence Berkeley National Laboratory, Berkeley, CA.
  • 30
    Krissinel E & Henrick E (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372, 774797.
  • 31
    Nooren IMA & Thornton JM (2003) Structural characterisation and functional significance of transient protein–protein interactions. J Mol Biol 325, 9911018.
  • 32
    Richter N, Breicha K, Hummel W & Niefind K (2010) The three-dimensional structure of AKR11B4, a glycerol dehydrogenase from Gluconobacter oxydans, reveals a tryptophan residue as an accelerator of reaction turnover. J Mol Biol 404, 353362.
  • 33
    Parkkinen T, Koivula A, Vehmaanperä J & Rouvinen J (2008) Crystal structures of Melanocarpus albomyces cellobiohydrolase Cel7B in complex with cello-oligomers show high flexibility in the substrate binding. Protein Sci 17, 13831394.
  • 34
    van Rantwijk F, Woudeberg-van Oostrom M & Sheldon RA (1999) Glycosidase-catalyzed synthesis of alkyl glycosides. J Mol Catal B 6, 511532.
  • 35
    Kabsch WJ (1993) Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constant. J Appl Crystallogr 26, 795800.
  • 36
    McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC & Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40, 658674.
  • 37
    Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D 66, 213221.
  • 38
    Emsley P & Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D 60, 21262132.
  • 39
    Laskowski RA, Macarthur MW, Moss DS & Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26, 283291.