• 1
    Saha S, Bardelli A, Buckhaults P, Velculescu VE, Rago C, St Croix B, Romans KE, Choti MA, Lengauer C, Kinzler KW et al. (2001) A phosphatase associated with metastasis of colorectal cancer. Science294, 13431346.
  • 2
    Al-Aidaroos AQ & Zeng Q (2010) PRL-3 phosphatase and cancer metastasis. J Cell Biochem111, 10871098.
  • 3
    Bessette DC, Qiu D & Pallen CJ (2008) PRL PTPs: mediators and markers of cancer progression. Cancer Metastasis Rev27, 231252.
  • 4
    Wang Y & Lazo JS (2012) Metastasis-associated phosphatase PRL-2 regulates tumor cell migration and invasion. Oncogene31, 818827.
  • 5
    Hardy S, Wong NN, Muller WJ, Park M & Tremblay ML (2010) Overexpression of the protein tyrosine phosphatase PRL-2 correlates with breast tumor formation and progression. Cancer Res70, 89598967.
  • 6
    Cates CA, Michael RL, Stayrook KR, Harvey KA, Burke YD, Randall SK, Crowell PL & Crowell DN (1996) Prenylation of oncogenic human PTP(CAAX) protein tyrosine phosphatases. Cancer Lett110, 4955.
  • 7
    Werner SR, Lee PA, DeCamp MW, Crowell DN, Randall SK & Crowell PL (2003) Enhanced cell cycle progression and down regulation of p21Cip1/Waf1 by PRL tyrosine phosphatases. Cancer Lett202, 201211.
  • 8
    Zeng Q, Dong JM, Guo K, Li J, Tan HX, Koh V, Pallen CJ, Manser E & Hong W (2003) PRL-3 and PRL-1 promote cell migration, invasion, and metastasis. Cancer Res63, 27162722.
  • 9
    Wu X, Zeng H, Zhang X, Zhao Y, Sha H, Ge X, Zhang M, Gao X & Xu Q (2004) Phosphatase of regenerating liver-3 promotes motility and metastasis of mouse melanoma cells. Am J Pathol164, 20392054.
  • 10
    Sun JP, Luo Y, Yu X, Wang WQ, Zhou B, Liang F & Zhang ZY (2007) Phosphatase activity, trimerization, and the C-terminal polybasic region are all required for PRL1-mediated cell growth and migration. J Biol Chem282, 2904329051.
  • 11
    Guo K, Tang JP, Tan CP, Wang H & Zeng Q (2008) Monoclonal antibodies target intracellular PRL phosphatases to inhibit cancer metastases in mice. Cancer Biol Ther7, 750757.
  • 12
    Ming J, Liu N, Gu Y, Qiu X & Wang EH (2009) PRL-3 facilitates angiogenesis and metastasis by increasing ERK phosphorylation and up-regulating the levels and activities of Rho-A/C in lung cancer. Pathology41, 118126.
  • 13
    Guo K, Li J, Wang H, Osato M, Tang JP, Quah SY, Gan BQ & Zeng Q (2006) PRL-3 initiates tumor angiogenesis by recruiting endothelial cells in vitro and in vivo. Cancer Res66, 96259635.
  • 14
    Nakashima M & Lazo JS (2010) Phosphatase of regenerating liver-1 promotes cell migration and invasion and regulates filamentous actin dynamics. J Pharmacol Exp Ther334, 627633.
  • 15
    Semba S, Mizuuchi E & Yokozaki H (2010) Requirement of phosphatase of regenerating liver-3 for the nucleolar localization of nucleolin during the progression of colorectal carcinoma. Cancer Sci101, 22542261.
  • 16
    Mohn KL, Laz TM, Hsu JC, Melby AE, Bravo R & Taub R (1991) The immediate-early growth response in regenerating liver and insulin-stimulated H-35 cells: comparison with serum-stimulated 3T3 cells and identification of 41 novel immediate-early genes. Mol Cell Biol11, 381390.
  • 17
    Diamond RH, Cressman DE, Laz TM, Abrams CS & Taub R (1994) PRL-1, a unique nuclear protein tyrosine phosphatase, affects cell growth. Mol Cell Biol14, 37523762.
  • 18
    Zhao Z, Lee CC, Monckton DG, Yazdani A, Coolbaugh MI, Li X, Bailey J, Shen Y & Caskey CT (1996) Characterization and genomic mapping of genes and pseudogenes of a new human protein tyrosine phosphatase. Genomics35, 172181.
  • 19
    Zeng Q, Hong W & Tan YH (1998) Mouse PRL-2 and PRL-3, two potentially prenylated protein tyrosine phosphatases homologous to PRL-1. Biochem Biophys Res Commun244, 421427.
  • 20
    Stephens BJ, Han H, Gokhale V & Von Hoff DD (2005) PRL phosphatases as potential molecular targets in cancer. Mol Cancer Ther4, 16531661.
  • 21
    Alonso A, Sasin J, Bottini N, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J & Mustelin T (2004) Protein tyrosine phosphatases in the human genome. Cell117, 699711.
  • 22
    Tonks NK (2005) Redox redux: revisiting PTPs and the control of cell signaling. Cell121, 667670.
  • 23
    Zeng Q, Si X, Horstmann H, Xu Y, Hong W & Pallen CJ (2000) Prenylation-dependent association of protein-tyrosine phosphatases PRL-1, -2, and -3 with the plasma membrane and the early endosome. J Biol Chem275, 2144421452.
  • 24
    Si X, Zeng Q, Ng CH, Hong W & Pallen CJ (2001) Interaction of farnesylated PRL-2, a protein-tyrosine phosphatase, with the beta-subunit of geranylgeranyltransferase II. J Biol Chem276, 3287532882.
  • 25
    Wang J, Kirby CE & Herbst R (2002) The tyrosine phosphatase PRL-1 localizes to the endoplasmic reticulum and the mitotic spindle and is required for normal mitosis. J Biol Chem277, 4665946668.
  • 26
    Dursina B, Reents R, Delon C, Wu Y, Kulharia M, Thutewohl M, Veligodsky A, Kalinin A, Evstifeev V, Ciobanu D et al. (2006) Identification and specificity profiling of protein prenyltransferase inhibitors using new fluorescent phosphoisoprenoids. J Am Chem Soc128, 28222835.
  • 27
    Ooms LM, Horan KA, Rahman P, Seaton G, Gurung R, Kethesparan DS & Mitchell CA (2009) The role of the inositol polyphosphate 5-phosphatases in cellular function and human disease. Biochem J419, 2949.
  • 28
    Fiordalisi JJ, Keller PJ & Cox AD (2006) PRL tyrosine phosphatases regulate rho family GTPases to promote invasion and motility. Cancer Res66, 31533161.
  • 29
    Guo K, Li J, Tang JP, Koh V, Gan BQ & Zeng Q (2004) Catalytic domain of PRL-3 plays an essential role in tumor metastasis: formation of PRL-3 tumors inside the blood vessels. Cancer Biol Ther3, 945951.
  • 30
    Min SH, Kim DM, Heo YS, Kim HM, Kim IC & Yoo OJ (2010) Downregulation of p53 by phosphatase of regenerating liver 3 is mediated by MDM2 and PIRH2. Life Sci86, 6672.
  • 31
    Sun JP, Wang WQ, Yang H, Liu S, Liang F, Fedorov AA, Almo SC & Zhang ZY (2005) Structure and biochemical properties of PRL-1, a phosphatase implicated in cell growth, differentiation, and tumor invasion. Biochemistry44, 1200912021.
  • 32
    Kozlov G, Cheng J, Ziomek E, Banville D, Gehring K & Ekiel I (2004) Structural insights into molecular function of the metastasis-associated phosphatase PRL-3. J Biol Chem279, 1188211889.
  • 33
    Pascaru M, Tanase C, Vacaru AM, Boeti P, Neagu E, Popescu I & Szedlacsek SE (2009) Analysis of molecular determinants of PRL-3. J Cell Mol Med13, 31413150.
  • 34
    Jeong DG, Kim SJ, Kim JH, Son JH, Park MR, Lim SM, Yoon TS & Ryu SE (2005) Trimeric structure of PRL-1 phosphatase reveals an active enzyme conformation and regulation mechanisms. J Mol Biol345, 401413.
  • 35
    Kim KA, Song JS, Jee J, Sheen MR, Lee C, Lee TG, Ro S, Cho JM, Lee W, Yamazaki T et al. (2004) Structure of human PRL-3, the phosphatase associated with cancer metastasis. FEBS Lett565, 181187.
  • 36
    Orsatti L, Innocenti F, Lo Surdo P, Talamo F & Barbato G (2009) Mass spectrometry study of PRL-3 phosphatase inactivation by disulfide bond formation and cysteine into glycine conversion. Rapid Commun Mass Spectrom23, 27332740.
  • 37
    Lee SR, Yang KS, Kwon J, Lee C, Jeong W & Rhee SG (2002) Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem277, 2033620342.
  • 38
    Skinner AL, Vartia AA, Williams TD & Laurence JS (2009) Enzyme activity of phosphatase of regenerating liver is controlled by the redox environment and its C-terminal residues. Biochemistry48, 42624272.
  • 39
    Ishibashi T, Bottaro DP, Chan A, Miki T & Aaronson SA (1992) Expression cloning of a human dual-specificity phosphatase. Proc Natl Acad Sci USA89, 1217012174.
  • 40
    Li L, Ljungman M & Dixon JE (2000) The human Cdc14 phosphatases interact with and dephosphorylate the tumor suppressor protein p53. J Biol Chem275, 24102414.
  • 41
    Poon RY & Hunter T (1995) Dephosphorylation of Cdk2 Thr160 by the cyclin-dependent kinase-interacting phosphatase KAP in the absence of cyclin. Science270, 9093.
  • 42
    Maehama T & Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem273, 1337513378.
  • 43
    Lee JO, Yang H, Georgescu MM, Di Cristofano A, Maehama T, Shi Y, Dixon JE, Pandolfi P & Pavletich NP (1999) Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell99, 323334.
  • 44
    Yuvaniyama J, Denu JM, Dixon JE & Saper MA (1996) Crystal structure of the dual specificity protein phosphatase VHR. Science272, 13281331.
  • 45
    Gray CH, Good VM, Tonks NK & Barford D (2003) The structure of the cell cycle protein Cdc14 reveals a proline-directed protein phosphatase. EMBO J22, 35243535.
  • 46
    Song H, Hanlon N, Brown NR, Noble ME, Johnson LN & Barford D (2001) Phosphoprotein-protein interactions revealed by the crystal structure of kinase-associated phosphatase in complex with phosphoCDK2. Mol Cell7, 615626.
  • 47
    Xiao J, Engel JL, Zhang J, Chen MJ, Manning G & Dixon JE (2011) Structural and functional analysis of PTPMT1, a phosphatase required for cardiolipin synthesis. Proc Natl Acad Sci USA108, 1186011865.
  • 48
    Iwasaki H, Murata Y, Kim Y, Hossain MI, Worby CA, Dixon JE, McCormack T, Sasaki T & Okamura Y (2008) A voltage-sensing phosphatase, Ci-VSP, which shares sequence identity with PTEN, dephosphorylates phosphatidylinositol 4,5-bisphosphate. Proc Natl Acad Sci USA105, 79707975.
  • 49
    Matsuda M, Takeshita K, Kurokawa T, Sakata S, Suzuki M, Yamashita E, Okamura Y & Nakagawa A (2011) Crystal structure of the cytoplasmic phosphatase and tensin homolog (PTEN)-like region of Ciona intestinalis voltage-sensing phosphatase provides insight into substrate specificity and redox regulation of the phosphoinositide phosphatase activity. J Biol Chem286, 2336823377.
  • 50
    McParland V, Varsano G, Li X, Thornton J, Baby J, Aravind A, Meyer C, Pavic K, Rios P & Köhn M (2011) The metastasis-promoting phosphatase PRL-3 shows activity toward phosphoinositides. Biochemistry50, 75797590.
  • 51
    Zhang ZY (1998) Protein-tyrosine phosphatases: biological function, structural characteristics, and mechanism of catalysis. Crit Rev Biochem Mol Biol33, 152.
  • 52
    Nakamura K, Tanoue K, Satoh T, Takekawa M, Watanabe M, Shima H & Kikuchi K (2002) A novel low-molecular-mass dual-specificity phosphatase, LDP-2, with a naturally occurring substitution that affects substrate specificity. J Biochem (Tokyo)132, 463470.
  • 53
    Zama T, Aoki R, Kamimoto T, Inoue K, Ikeda Y & Hagiwara M (2002) A novel dual specificity phosphatase SKRP1 interacts with the MAPK kinase MKK7 and inactivates the JNK MAPK pathway. Implication for the precise regulation of the particular MAPK pathway. J Biol Chem277, 2390923918.
  • 54
    Begley MJ, Taylor GS, Brock MA, Ghosh P, Woods VL & Dixon JE (2006) Molecular basis for substrate recognition by MTMR2, a myotubularin family phosphoinositide phosphatase. Proc Natl Acad Sci USA103, 927932.
  • 55
    Xiao Y, Yeong Chit Chia J, Gajewski JE, Sio Seng Lio D, Mulhern TD, Zhu HJ, Nandurkar H & Cheng HC (2007) PTEN catalysis of phospholipid dephosphorylation reaction follows a two-step mechanism in which the conserved aspartate-92 does not function as the general acid-mechanistic analysis of a familial Cowden disease-associated PTEN mutation. Cell Signal19, 14341445.
  • 56
    Han SY, Kato H, Kato S, Suzuki T, Shibata H, Ishii S, Shiiba K, Matsuno S, Kanamaru R & Ishioka C (2000) Functional evaluation of PTEN missense mutations using in vitro phosphoinositide phosphatase assay. Cancer Res60, 31473151.
  • 57
    Matter WF, Estridge T, Zhang C, Belagaje R, Stancato L, Dixon J, Johnson B, Bloem L, Pickard T, Donaghue M et al. (2001) Role of PRL-3, a human muscle-specific tyrosine phosphatase, in angiotensin-II signaling. Biochem Biophys Res Commun283, 10611068.
  • 58
    Kato H, Semba S, Miskad UA, Seo Y, Kasuga M & Yokozaki H (2004) High expression of PRL-3 promotes cancer cell motility and liver metastasis in human colorectal cancer: a predictive molecular marker of metachronous liver and lung metastases. Clin Cancer Res10, 73187328.
  • 59
    Wang L, Peng L, Dong B, Kong L, Meng L, Yan L, Xie Y & Shou C (2006) Overexpression of phosphatase of regenerating liver-3 in breast cancer: association with a poor clinical outcome. Ann Oncol17, 15171522.
  • 60
    Miskad UA, Semba S, Kato H & Yokozaki H (2004) Expression of PRL-3 phosphatase in human gastric carcinomas: close correlation with invasion and metastasis. Pathobiology71, 176184.
  • 61
    Polato F, Codegoni A, Fruscio R, Perego P, Mangioni C, Saha S, Bardelli A & Broggini M (2005) PRL-3 phosphatase is implicated in ovarian cancer growth. Clin Cancer Res11, 68356839.
  • 62
    Peng L, Ning J, Meng L & Shou C (2004) The association of the expression level of protein tyrosine phosphatase PRL-3 protein with liver metastasis and prognosis of patients with colorectal cancer. J Cancer Res Clin Oncol130, 521526.
  • 63
    Hassan NM, Hamada J, Kameyama T, Tada M, Nakagawa K, Yoshida S, Kashiwazaki H, Yamazaki Y, Suzuki Y, Sasaki A et al. (2011) Increased expression of the PRL-3 gene in human oral squamous cell carcinoma and dysplasia tissues. Asian Pac J Cancer Prev12, 947951.
  • 64
    Ma Y & Li B (2011) Expression of phosphatase of regenerating liver-3 in squamous cell carcinoma of the cervix. Med Oncol28, 775780.
  • 65
    Broyl A, Hose D, Lokhorst H, de Knegt Y, Peeters J, Jauch A, Bertsch U, Buijs A, Stevens-Kroef M, Beverloo HB et al. (2010) Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients. Blood116, 25432553.
  • 66
    Fagerli UM, Holt RU, Holien T, Vaatsveen TK, Zhan F, Egeberg KW, Barlogie B, Waage A, Aarset H, Dai HY et al. (2008) Overexpression and involvement in migration by the metastasis-associated phosphatase PRL-3 in human myeloma cells. Blood111, 806815.
  • 67
    Zhou J, Bi C, Chng WJ, Cheong LL, Liu SC, Mahara S, Tay KG, Zeng Q, Li J, Guo K et al. (2011) PRL-3, a metastasis associated tyrosine phosphatase, is involved in FLT3-ITD signaling and implicated in anti-AML therapy. PLoS One6, e19798.
  • 68
    Forte E, Orsatti L, Talamo F, Barbato G, De Francesco R & Tomei L (2008) Ezrin is a specific and direct target of protein tyrosine phosphatase PRL-3. Biochim Biophys Acta1783, 334344.
  • 69
    Orsatti L, Forte E, Tomei L, Caterino M, Pessi A & Talamo F (2009) 2-D Difference in gel electrophoresis combined with Pro-Q Diamond staining: a successful approach for the identification of kinase/phosphatase targets. Electrophoresis30, 24692476.
  • 70
    Mizuuchi E, Semba S, Kodama Y & Yokozaki H (2009) Down-modulation of keratin 8 phosphorylation levels by PRL-3 contributes to colorectal carcinoma progression. Int J Cancer124, 18021810.
  • 71
    Peng L, Jin G, Wang L, Guo J, Meng L & Shou C (2006) Identification of integrin alpha1 as an interacting protein of protein tyrosine phosphatase PRL-3. Biochem Biophys Res Commun342, 179183.
  • 72
    Zheng P, Liu YX, Chen L, Liu XH, Xiao ZQ, Zhao L, Li GQ, Zhou J, Ding YQ & Li JM (2010) Stathmin, a new target of PRL-3 identified by proteomic methods, plays a key role in progression and metastasis of colorectal cancer. J Proteome Res9, 48974905.
  • 73
    Peng L, Xing X, Li W, Qu L, Meng L, Lian S, Jiang B, Wu J & Shou C (2009) PRL-3 promotes the motility, invasion, and metastasis of LoVo colon cancer cells through PRL-3-integrin beta1-ERK1/2 and-MMP2 signaling. Mol Cancer8, 110.
  • 74
    Jiang Y, Liu XQ, Rajput A, Geng L, Ongchin M, Zeng Q, Taylor GS & Wang J (2011) Phosphatase PRL-3 is a direct regulatory target of TGFbeta in colon cancer metastasis. Cancer Res71, 234244.
  • 75
    Liu Y, Zhou J, Chen J, Gao W, Le Y, Ding Y & Li J (2009) PRL-3 promotes epithelial mesenchymal transition by regulating cadherin directly. Cancer Biol Ther8, 13521359.
  • 76
    Choi MS, Min SH, Jung H, Lee JD, Lee TH, Lee HK & Yoo OJ (2011) The essential role of FKBP38 in regulating phosphatase of regenerating liver 3 (PRL-3) protein stability. Biochem Biophys Res Commun406, 305309.
  • 77
    Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O’Connor L, Li M et al. (2007) Large-scale mapping of human protein–protein interactions by mass spectrometry. Mol Syst Biol3, 89.
  • 78
    Khanna C, Wan X, Bose S, Cassaday R, Olomu O, Mendoza A, Yeung C, Gorlick R, Hewitt SM & Helman LJ (2004) The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med10, 182186.
  • 79
    Fievet BT, Gautreau A, Roy C, Del Maestro L, Mangeat P, Louvard D & Arpin M (2004) Phosphoinositide binding and phosphorylation act sequentially in the activation mechanism of ezrin. J Cell Biol164, 653659.
  • 80
    Neisch AL & Fehon RG (2011) Ezrin, Radixin and Moesin: key regulators of membrane-cortex interactions and signaling. Curr Opin Cell Biol23, 377382.
  • 81
    Liang F, Liang J, Wang WQ, Sun JP, Udho E & Zhang ZY (2007) PRL3 promotes cell invasion and proliferation by down-regulation of Csk leading to Src activation. J Biol Chem282, 54135419.
  • 82
    Heiska L, Melikova M, Zhao F, Saotome I, McClatchey AI & Carpen O (2011) Ezrin is key regulator of Src-induced malignant phenotype in three-dimensional environment. Oncogene30, 49534962.
  • 83
    Wang H, Vardy LA, Tan CP, Loo JM, Guo K, Li J, Lim SG, Zhou J, Chng WJ, Ng SB et al. (2010) PCBP1 suppresses the translation of metastasis-associated PRL-3 phosphatase. Cancer Cell18, 5262.
  • 84
    Basak S, Jacobs SB, Krieg AJ, Pathak N, Zeng Q, Kaldis P, Giaccia AJ & Attardi LD (2008) The metastasis-associated gene Prl-3 is a p53 target involved in cell-cycle regulation. Mol Cell30, 303314.
  • 85
    Fontemaggi G, Kela I, Amariglio N, Rechavi G, Krishnamurthy J, Strano S, Sacchi A, Givol D & Blandino G (2002) Identification of direct p73 target genes combining DNA microarray and chromatin immunoprecipitation analyses. J Biol Chem277, 4335943368.
  • 86
    Xu J, Cao S, Wang L, Xu R, Chen G & Xu Q (2011) VEGF Promotes the transcription of the human PRL-3 gene in HUVEC through transcription factor MEF2C. PLoS One6, e27165.
  • 87
    Thiery JP & Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol7, 131142.
  • 88
    Wang H, Quah SY, Dong JM, Manser E, Tang JP & Zeng Q (2007) PRL-3 down-regulates PTEN expression and signals through PI3K to promote epithelial-mesenchymal transition. Cancer Res67, 29222926.
  • 89
    Zheng P, Meng HM, Gao WZ, Chen L, Liu XH, Xiao ZQ, Liu YX, Sui HM, Zhou J, Liu YH et al. (2011) Snail as a key regulator of PRL-3 gene in colorectal cancer. Cancer Biol Ther12, 742749.
  • 90
    Cully M, You H, Levine AJ & Mak TW (2006) Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer6, 184192.
  • 91
    Liu P, Cheng H, Roberts TM & Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov8, 627644.
  • 92
    Bunney TD & Katan M (2010) Phophoinositide signaling in cancer: beyond PI3K and PTEN. Nat Rev Cancer10, 342352.
  • 93
    Mitra SK, Hanson D & Schlaepfer DD (2005) Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol6, 5668.
  • 94
    Liang F, Luo Y, Dong Y, Walls CD, Liang J, Jiang HY, Sanford JR, Wek RC & Zhang ZY (2008) Translational control of C-terminal Src kinase (Csk) expression by PRL3 phosphatase. J Biol Chem283, 1033910346.
  • 95
    McClatchey AI (2003) Merlin and ERM proteins: unappreciated roles in cancer development?Nat Rev Cancer3, 877883.
  • 96
    Lemmon M (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol9, 99111.
  • 97
    Van Meer G, Voelker DR & Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol9, 112124.
  • 98
    Deryugina EI & Quigley JP (2006) Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev25, 934.
  • 99
    Lee SK, Han YM, Yun J, Lee CW, Shin DS, Ha YR, Kim J, Koh JS, Hong SH, Han DC et al. (2011) PRL-3 promotes migration and invasion by up-regulating MMP-7 in human colorectal cancer cells. Int J Cancer. doi:10.1002/ijc.27381.
  • 100
    Lai W, Chen S, Wu H, Guan Y, Liu L, Zeng Y, Zhao H, Jiang J & Chu Z (2011) PRL-3 promotes the proliferation of LoVo cells via the upregulation of KCNN4 channels. Oncol Rep26, 909917.
  • 101
    Min SH, Kim DM, Heo YS, Kim YI, Kim HM, Kim J, Han YM, Kim IC & Yoo OJ (2009) New p53 target, phosphatase of regenerating liver 1 (PRL-1) downregulates p53. Oncogene28, 545554.
  • 102
    Diamond RH, Peters C, Jung SP, Greenbaum LE, Haber BA, Silberg DG, Traber PG & Taub R (1996) Expression of PRL-1 nuclear PTPase is associated with proliferation in liver but with differentiation in intestine. Am J Physiol271, G121G129.
  • 103
    Peng Y, Genin A, Spinner NB, Diamond RH & Taub R (1998) The gene encoding human nuclear protein tyrosine phosphatase, PRL-1. Cloning, chromosomal localization, and identification of an intron enhancer. J Biol Chem273, 1728617295.
  • 104
    Dumaual CM, Sandusky GE, Crowell PL & Randall SK (2006) Cellular localization of PRL-1 and PRL-2 gene expression in normal adult human tissues. J Histochem Cytochem54, 14011412.
  • 105
    Wang Y, Li ZF, He J, Li YL, Zhu GB, Zhang LH & Li YL (2007) Expression of the human phosphatases of regenerating liver (PRLs) in colonic adenocarcinoma and its correlation with lymph node metastasis. Int J Colorectal Dis22, 11791184.
  • 106
    Achiwa H & Lazo JS (2007) PRL-1 tyrosine phosphatase regulates c-Src levels, adherence, and invasion in human lung cancer cells. Cancer Res67, 643650.
  • 107
    Stephens B, Han H, Hostetter G, Demeure MJ & Von Hoff DD (2008) Small interfering RNA-mediated knockdown of PRL phosphatases results in altered Akt phosphorylation and reduced clonogenicity of pancreatic cancer cells. Mol Cancer Ther7, 202210.
  • 108
    Luo Y, Liang F & Zhang ZY (2009) PRL1 promotes cell migration and invasion by increasing MMP2 and MMP9 expression through Src and ERK1/2 pathways. Biochemistry48, 18381846.
  • 109
    Peters CS, Liang X, Li S, Kannan S, Peng Y, Taub R & Diamond RH (2001) ATF-7, a novel bZIP protein, interacts with the PRL-1 protein-tyrosine phosphatase. J Biol Chem276, 1371813726.
  • 110
    Bai Y, Luo Y, Liu S, Zhang L, Shen K, Dong Y, Walls CD, Quilliam LA, Wells CD, Cao Y et al. (2011) PRL-1 promotes ERK1/2 and RhoA activation through a novel interaction with p115 RhoGAP. J Biol Chem286, 4231642324.
  • 111
    Yu L, Kelly U, Ebright JN, Malek G, Saloupis P, Rickman DW, McKay BS, Arshavsky VY & Bowes Rickman C (2007) Oxidative stress-induced expression and modulation of phosphatase of regenerating liver-1 (PRL-1) in mammalian retina. Biochim Biophys Acta1773, 14731482.
  • 112
    Daouti S, Li WH, Qian H, Huang KS, Holmgren J, Levin W, Reik L, McGady DL, Gillespie P, Perrotta A et al. (2008) A selective phosphatase of regenerating liver phosphatase inhibitor suppresses tumor cell anchorage-independent growth by a novel mechanism involving p130Cas cleavage. Cancer Res68, 11621169.
  • 113
    Christerson LB, Gallagher E, Vanderbilt CA, Whitehurst AW, Wells C, Kazempour R, Sternweis PC & Cobb MH (2002) p115 Rho GTPase activating protein interacts with MEKK1. J Cell Physiol192, 200208.
  • 114
    Tribioli C, Droetto S, Bione S, Cesareni G, Torrisi MR, Lotti LV, Lanfrancone L, Toniolo D & Pelicci P (1996) An X chromosome-linked gene encoding a protein with characteristics of a rhoGAP predominantly expressed in hematopoietic cells. Proc Natl Acad Sci USA93, 695699.
  • 115
    Wang Q, Holmes DI, Powell SM, Lu QL & Waxman J (2002) Analysis of stromal-epithelial interactions in prostate cancer identifies PTPCAAX2 as a potential oncogene. Cancer Lett175, 6369.
  • 116
    Akiyama S, Dhavan D & Yi T (2010) PRL-2 increases Epo and IL-3 responses in hematopoietic cells. Blood Cells Mol Dis44, 209214.
  • 117
    Yagi T, Morimoto A, Eguchi M, Hibi S, Sako M, Ishii E, Mizutani S, Imashuku S, Ohki M & Ichikawa H (2003) Identification of a gene expression signature associated with pediatric AML prognosis. Blood102, 18491856.
  • 118
    Radke I, Gotte M, Kersting C, Mattsson B, Kiesel L & Wulfing P (2006) Expression and prognostic impact of the protein tyrosine phosphatases PRL-1, PRL-2, and PRL-3 in breast cancer. Br J Cancer95, 347354.
  • 119
    Playford MP & Schaller MD (2004) The interplay between Src and integrins in normal and tumor biology. Oncogene23, 79287946.
  • 120
    Schwering I, Brauninger A, Distler V, Jesdinsky J, Diehl V, Hansmann ML, Rajewsky K & Kuppers R (2003) Profiling of Hodgkin’s lymphoma cell line L1236 and germinal center B cells: identification of Hodgkin’s lymphoma-specific genes. Mol Med9, 8595.
  • 121
    Monaco SE, Angelastro JM, Szabolcs M & Greene LA (2007) The transcription factor ATF5 is widely expressed in carcinomas, and interference with its function selectively kills neoplastic, but not nontransformed, breast cell lines. Int J Cancer120, 18831890.
  • 122
    Persengiev SP & Green MR (2003) The role of ATF/CREB family members in cell growth, survival and apoptosis. Apoptosis8, 225228.
  • 123
    Angelastro JM, Canoll PD, Kuo J, Weicker M, Costa A, Bruce JN & Greene LA (2006) Selective destruction of glioblastoma cells by interference with the activity or expression of ATF5. Oncogene25, 907916.
  • 124
    Dluzen D, Li G, Tacelosky D, Moreau M & Liu DX (2011) BCL-2 is a downstream target of ATF5 that mediates the prosurvival function of ATF5 in a cell type-dependent manner. J Biol Chem286, 77057713.