• 1
    Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P & Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell127, 635648.
  • 2
    Moorhead GB, Trinkle-Mulcahy L & Ulke-Lemée A (2007) Emerging roles of nuclear protein phosphatases. Nat Rev Mol Cell Biol8, 234244.
  • 3
    Virshup DM & Shenolikar S (2009) From promiscuity to precision: protein phosphatases get a makeover. Mol Cell33, 537545.
  • 4
    Janssens V, Longin S & Goris J (2008) PP2A holoenzyme assembly: in cauda venenum (the sting is in the tail). Trends Biochem Sci33, 113121.
  • 5
    Kremmer E, Ohst K, Kiefer J, Brewis N & Walter G (1997) Separation of PP2A core enzyme and holoenzyme with monoclonal antibodies against the regulatory A subunit: abundant expression of both forms in cells. Mol Cell Biol17, 16921701.
  • 6
    Götz J, Probst A, Ehler E, Hemmings B & Kues W (1998) Delayed embryonic lethality in mice lacking protein phosphatase 2A catalytic subunit Calpha. Proc Natl Acad Sci USA95, 1237012375.
  • 7
    Gu P, Qi X, Zhou Y, Wang Y & Gao X (2012) Generation of Ppp2Ca and Ppp2Cb conditional null alleles in mouse. Genesis doi:10.1002/dvg.20815. [in press].
  • 8
    Ruediger R, Ruiz J & Walter G (2011) Human cancer-associated mutations in the Aα subunit of protein phosphatase 2A increase lung cancer incidence in Aα knock-in and knockout mice. Mol Cell Biol31, 38323844.
  • 9
    Sablina AA, Chen W, Arroyo JD, Corral L, Hector M, Bulmer SE, DeCaprio JA & Hahn WC (2007) The tumor suppressor PP2A Abeta regulates the RalA GTPase. Cell129, 969982.
  • 10
    Dagda RK, Zaucha JA, Wadzinski BE & Strack S (2003) A developmentally regulated, neuron-specific splice variant of the variable subunit Bbeta targets protein phosphatase 2A to mitochondria and modulates apoptosis. J Biol Chem278, 2497624985.
  • 11
    Zwaenepoel K, Louis JV, Goris J & Janssens V (2008) Diversity in genomic organisation, developmental regulation and distribution of the murine PR72/B′′ subunits of protein phosphatase 2A. BMC Genomics9, doi:10.1186/1471-2164-9-393.
  • 12
    Jin Z, Shi J, Saraf A, Mei W, Zhu GZ, Strack S & Yang J (2009) The 48-kDa alternative translation isoform of PP2A:B56epsilon is required for Wnt signaling during midbrain–hindbrain boundary formation. J Biol Chem284, 71907200.
  • 13
    Gentry MS & Hallberg RL (2002) Localization of Saccharomyces cerevisiae protein phosphatase 2A subunits throughout mitotic cell cycle. Mol Biol Cell13, 34773492.
  • 14
    Shi Y (2009) Serine/threonine phosphatases: mechanism through structure. Cell139, 468484.
  • 15
    Slupe AM, Merrill RA & Strack S (2011) Determinants for substrate specificity of protein phosphatase 2A. Enzyme Res2011, doi:10.4061/2011/398751.
  • 16
    Janssens V & Goris J (2001) Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J353, 417439.
  • 17
    Xu Y, Xing Y, Chen Y, Chao Y, Lin Z, Fan E, Yu JW, Strack S, Jeffrey PD & Shi Y (2006) Structure of the protein phosphatase 2A holoenzyme. Cell127, 12391251.
  • 18
    Cho US & Xu W (2007) Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature445, 5357.
  • 19
    Xu Y, Chen Y, Zhang P, Jeffrey PD & Shi Y (2008) Structure of a protein phosphatase 2A holoenzyme: insights into B55-mediated Tau dephosphorylation. Mol Cell31, 873885.
  • 20
    Xu Z, Cetin B, Anger M, Cho US, Helmhart W, Nasmyth K & Xu W (2009) Structure and function of the PP2A–shugoshin interaction. Mol Cell35, 426441.
  • 21
    McCright B, Rivers AM, Audlin S & Virshup DM (1996) The B56 family of protein phosphatase 2A (PP2A) regulatory subunits encodes differentiation-induced phosphoproteins that target PP2A to both nucleus and cytoplasm. J Biol Chem271, 2208122089.
  • 22
    Martens E, Stevens I, Janssens V, Vermeesch J, Götz J, Goris J & Van Hoof C (2004) Genomic organisation, chromosomal localisation tissue distribution and developmental regulation of the PR61/B′ regulatory subunits of protein phosphatase 2A in mice. J Mol Biol336, 971986.
  • 23
    Zolnierowicz S, Csortos C, Bondor J, Verin A, Mumby MC & DePaoli-Roach AA (1994) Diversity in the regulatory B-subunits of protein phosphatase 2A: identification of a novel isoform highly expressed in brain. Biochemistry33, 1185811867.
  • 24
    Strack S, Chang D, Zaucha JA, Colbran RJ & Wadzinski BE (1999) Cloning and characterization of B delta, a novel regulatory subunit of protein phosphatase 2A. FEBS Lett460, 462466.
  • 25
    Schmidt K, Kins S, Schild A, Nitsch RM, Hemmings BA & Götz J (2002) Diversity, developmental regulation and distribution of murine PR55/B subunits of protein phosphatase 2A. Eur J Neurosci16, 20392048.
  • 26
    Wurzenberger C & Gerlich DW (2011) Phosphatases: providing safe passage through mitotic exit. Nat Rev Mol Cell Biol12, 469482.
  • 27
    Barr FA, Elliott PR & Gruneberg U (2011) Protein phosphatases and the regulation of mitosis. J Cell Sci124, 23232334.
  • 28
    Janssens V & Rebollo A (2012) The role and therapeutic potential of Ser/Thr phosphatase PP2A in apoptotic signaling networks in human cancer cells. Curr Mol Med12, 268287.
  • 29
    Eichhorn PJ, Creyghton MP & Bernards R (2009) Protein phosphatase 2A regulatory subunits and cancer. Biochim Biophys Acta1795, 115.
  • 30
    Batut J, Schmierer B, Cao J, Raftery LA, Hill CS & Howell M (2008) Two highly related regulatory subunits of PP2A exert opposite effects on TGF-beta/Activin/Nodal signalling. Development135, 29272937.
  • 31
    Götz J, Gladbach A, Pennanen L, van Eersel J, Schild A, David D & Ittner LM (2010) Animal models reveal role for tau phosphorylation in human disease. Biochim Biophys Acta1802, 860871.
  • 32
    Yang J & Phiel C (2010) Functions of B56-containing PP2As in major developmental and cancer signaling pathways. Life Sci87, 659666.
  • 33
    Walaas SI, Hemmings HC Jr, Greengard P & Nairn AC (2011) Beyond the dopamine receptor: regulation and roles of serine/threonine protein phosphatases. Front Neuroanat5, doi:10.3389/fnana.2011.00050.
  • 34
    Janssens V, Goris J & Van Hoof C (2005) PP2A: the expected tumor suppressor. Curr Opin Genet Dev15, 3441.
  • 35
    Arroyo JD & Hahn WC (2005) Involvement of PP2A in viral and cellular transformation. Oncogene24, 77467755.
  • 36
    Arnold HK & Sears RC (2008) A tumor suppressor role for PP2A-B56alpha through negative regulation of c-Myc and other key oncoproteins. Cancer Metast Rev27, 147158.
  • 37
    Westermarck J & Hahn WC (2008) Multiple pathways regulated by the tumor suppressor PP2A in transformation. Trends Mol Med14, 152160.
  • 38
    Zwaenepoel K, Goris J, Erneux C, Parker PJ & Janssens V (2010) Protein phosphatase 2A PR130/B′′’alpha1 subunit binds to the SH2 domain-containing inositol polyphosphate 5-phosphatase 2 and prevents epidermal growth factor (EGF)-induced EGF receptor degradation sustaining EGF-mediated signaling. FASEB J24, 538547.
  • 39
    Kolupaeva V & Janssens V (2012) PP1 and PP2A phosphatases: cooperating partners in modulating retinoblastoma protein activation. FEBS J doi:10.1111/j.1742-4658.2012.08511.x.
  • 40
    Davis AJ, Yan Z, Martinez B & Mumby MC (2008) Protein phosphatase 2A is targeted to cell division control protein 6 by a calcium-binding regulatory subunit. J Biol Chem283, 1610416114.
  • 41
    Ribeiro PS, Josué F, Wepf A, Wehr MC, Rinner O, Kelly G, Tapon N & Gstaiger M (2010) Combined functional genomic and proteomic approaches identify a PP2A complex as a negative regulator of Hippo signaling. Mol Cell39, 521534.
  • 42
    Louis JV, Martens E, Borghgraef P, Lambrecht C, Sents W, Longin S, Zwaenepoel K, Pijnenborg R, Landrieu I, Lippens G et al. (2011) Mice lacking phosphatase PP2A subunit PR61/B′delta (Ppp2r5d) develop spatially restricted tauopathy by deregulation of CDK5 and GSK3beta. Proc Natl Acad Sci USA108, 69576962.
  • 43
    Hombauer H, Weismann D, Mudrak I, Stanzel C, Fellner T, Lackner DH & Ogris E (2007) Generation of active protein phosphatase 2A is coupled to holoenzyme assembly. PLoS Biol5, e155.
  • 44
    Fellner T, Lackner DH, Hombauer H, Piribauer P, Mudrak I, Zaragoza K, Juno C & Ogris E (2003) A novel and essential mechanism determining specificity and activity of protein phosphatase 2A (PP2A) in vivo. Genes Dev17, 21382150.
  • 45
    Li X, Scuderi A, Letsou A & Virshup DM (2002) B56-associated protein phosphatase 2A is required for survival and protects from apoptosis in Drosophila melanogaster. Mol Cell Biol22, 36743684.
  • 46
    Silverstein AM, Barrow CA, Davis AJ & Mumby MC (2002) Actions of PP2A on the MAP kinase pathway and apoptosis are mediated by distinct regulatory subunits. Proc Natl Acad Sci USA99, 42214226.
  • 47
    Strack S, Cribbs JT & Gomez L (2004) Critical role for protein phosphatase 2A heterotrimers in mammalian cell survival. J Biol Chem279, 4773247739.
  • 48
    Schmitz MH, Held M, Janssens V, Hutchins JR, Hudecz O, Ivanova E, Goris J, Trinkle-Mulcahy L, Lamond AI, Poser I et al. (2010) Live-cell imaging RNAi screen identifies PP2A-B55alpha and importin-beta1 as key mitotic exit regulators in human cells. Nat Cell Biol12, 886893.
  • 49
    Chen J, Martin BL & Brautigan DL (1992) Regulation of protein serine-threonine phosphatase type-2A by tyrosine phosphorylation. Science257, 12611264.
  • 50
    De Baere I, Derua R, Janssens V, Van Hoof C, Waelkens E, Merlevede W & Goris J (1999) Purification of porcine brain protein phosphatase 2A leucine carboxyl methyltransferase and cloning of the human homologue. Biochemistry38, 1653916547.
  • 51
    Ogris E, Du X, Nelson KC, Mak EK, Yu XX, Lane WS & Pallas DC (1999) A protein phosphatase methylesterase (PME-1) is one of several novel proteins stably associating with two inactive mutants of protein phosphatase 2A. J Biol Chem274, 1438214391.
  • 52
    Longin S, Zwaenepoel K, Louis JV, Dilworth S, Goris J & Janssens V (2007) Selection of protein phosphatase 2A regulatory subunits is mediated by the C terminus of the catalytic subunit. J Biol Chem282, 2697126980.
  • 53
    Lee JA & Pallas DC (2007) Leucine carboxyl methyltransferase-1 is necessary for normal progression through mitosis in mammalian cells. J Biol Chem282, 3097430984.
  • 54
    Ortega-Gutiérrez S, Leung D, Ficarro S, Peters EC & Cravatt BF (2008) Targeted disruption of the PME-1 gene causes loss of demethylated PP2A and perinatal lethality in mice. PLoS ONE3, e2486.
  • 55
    Sablina AA, Hector M, Colpaert N & Hahn WC (2010) Identification of PP2A complexes and pathways involved in cell transformation. Cancer Res70, 1047410484.
  • 56
    Leulliot N, Quevillon-Cheruel S, Sorel I, Graille M, Meyer P, Liger D, Blondeau K, Janin J & van Tilbeurgh H (2004) Structure of protein phosphatase methyltransferase 1 (PPM1), a leucine carboxyl methyltransferase involved in the regulation of protein phosphatase 2A activity. J Biol Chem279, 83518358.
  • 57
    Tsai ML, Cronin N & Djordjevic S (2011) The structure of human leucine carboxyl methyltransferase 1 that regulates protein phosphatase PP2A. Acta Crystallogr D Biol Crystallogr67, 1424.
  • 58
    Stanevich V, Jiang L, Satyshur KA, Li Y, Jeffrey PD, Li Z, Menden P, Semmelhack MF & Xing Y (2011) The structural basis for tight control of PP2A methylation and function by LCMT-1. Mol Cell41, 331342.
  • 59
    Ikehara T, Ikehara S, Imamura S, Shinjo F & Yasumoto T (2007) Methylation of the C-terminal leucine residue of the PP2A catalytic subunit is unnecessary for the catalytic activity and the binding of regulatory subunit (PR55/B). Biochem Biophys Res Commun354, 10521057.
  • 60
    Vafai SB & Stock JB (2002) Protein phosphatase 2A methylation: a link between elevated plasma homocysteine and Alzheimer’s Disease. FEBS Lett518, 14.
  • 61
    Sontag E, Nunbhakdi-Craig V, Sontag JM, Diaz-Arrastia R, Ogris E, Dayal S, Lentz SR, Arning E & Bottiglieri T (2007) Protein phosphatase 2A methyltransferase links homocysteine metabolism with tau and amyloid precursor protein regulation. J Neurosci27, 27512759.
  • 62
    Sontag JM, Nunbhakdi-Craig V, Montgomery L, Arning E, Bottiglieri T & Sontag E (2008) Folate deficiency induces in vitro and mouse brain region-specific downregulation of leucine carboxyl methyltransferase-1 and protein phosphatase 2A B(alpha) subunit expression that correlate with enhanced tau phosphorylation. J Neurosci28, 1147711487.
  • 63
    Israel M & Schwartz L (2011) The metabolic advantage of tumor cells. Mol Cancer10, doi:10.1186/1476-4598-10-70.
  • 64
    Cayla X, Van Hoof C, Bosch M, Waelkens E, Vandekerckhove J, Peeters B, Merlevede W & Goris J (1994) Molecular cloning, expression, and characterization of PTPA, a protein that activates the tyrosyl phosphatase activity of protein phosphatase 2A. J Biol Chem269, 1566815675.
  • 65
    Longin S, Jordens J, Martens E, Stevens I, Janssens V, Rondelez E, De Baere I, Derua R, Waelkens E, Goris J et al. (2004) An inactive protein phosphatase 2A population is associated with methylesterase and can be re-activated by the phosphotyrosyl phosphatase activator. Biochem J380, 111119.
  • 66
    Xing Y, Li Z, Chen Y, Stock JB, Jeffrey PD & Shi Y (2008) Structural mechanism of demethylation and inactivation of protein phosphatase 2A. Cell133, 154163.
  • 67
    Longin S, Zwaenepoel K, Martens E, Louis JV, Rondelez E, Goris J & Janssens V (2008) Spatial control of protein phosphatase 2A (de)methylation. Exp Cell Res314, 6881.
  • 68
    Wepf A, Glatter T, Schmidt A, Aebersold R & Gstaiger M (2009) Quantitative interaction proteomics using mass spectrometry. Nat Methods6, 203205.
  • 69
    Puustinen P, Junttila MR, Vanhatupa S, Sablina AA, Hector ME, Teittinen K, Raheem O, Ketola K, Lin S, Kast J et al. (2009) PME-1 protects extracellular signal-regulated kinase pathway activity from protein phosphatase 2A-mediated inactivation in human malignant glioma. Cancer Res69, 28702877.
  • 70
    Jordens J, Janssens V, Longin S, Stevens I, Martens E, Bultynck G, Engelborghs Y, Lescrinier E, Waelkens E, Goris J et al. (2006) The protein phosphatase 2A phosphatase activator is a novel peptidyl-prolyl cis/trans-isomerase. J Biol Chem281, 63496357.
  • 71
    Leulliot N, Vicentini G, Jordens J, Quevillon-Cheruel S, Schiltz M, Barford D, van Tilbeurgh H & Goris J (2006) Crystal structure of the PP2A phosphatase activator: implications for its PP2A-specific PPIase activity. Mol Cell23, 413424.
  • 72
    Chao Y, Xing Y, Chen Y, Xu Y, Lin Z, Li Z, Jeffrey PD, Stock JB & Shi Y (2006) Structure and mechanism of the phosphotyrosyl phosphatase activator. Mol Cell23, 535546.
  • 73
    Van Hoof C, Cayla X, Bosch M, Merlevede W & Goris J (1994) The phosphotyrosyl phosphatase activator of protein phosphatase 2A. A novel purification method, immunological and enzymic characterization. Eur J Biochem226, 899907.
  • 74
    Rempola B, Kaniak A, Migdalski A, Rytka J, Slonimski PP & di Rago JP (2000) Functional analysis of RRD1 (YIL153w) and RRD2 (YPL152w), which encode two putative activators of the phosphotyrosyl phosphatase activity of PP2A in Saccharomyces cerevisiae. Mol Gen Genet262, 10811092.
  • 75
    Van Hoof C, Janssens V, De Baere I, de Winde JH, Winderickx J, Dumortier F, Thevelein JM, Merlevede W & Goris J (2000) The Saccharomyces cerevisiae homologue YPA1 of the mammalian phosphotyrosyl phosphatase activator of protein phosphatase 2A controls progression through the G1 phase of the yeast cell cycle. J Mol Biol302, 103120.
  • 76
    Mitchell DA & Sprague GF (2001) The phosphotyrosyl phosphatase activator, Ncs1p (Rrd1p), functions with Cla4p to regulate the G2/M transition in Saccharomyces cerevisiae. Mol Cell Biol21, 488500.
  • 77
    Ramotar D, Belanger E, Brodeur I, Masson JY & Drobetsky EA (1998) A yeast homologue of the human phosphotyrosyl phosphatase activator PTPA is implicated in protection against oxidative DNA damage induced by the model carcinogen 4-nitroquinoline 1-oxide. J Biol Chem273, 2148921496.
  • 78
    Zhang W & Durocher D (2010) De novo telomere formation is suppressed by the Mec1-dependent inhibition of Cdc13 accumulation at DNA breaks. Genes Dev24, 502515.
  • 79
    Van Hoof C, Janssens V, De Baere I, Stark MJ, de Winde JH, Winderickx J, Thevelein JM, Merlevede W & Goris J (2001) The Saccharomyces cerevisiae phosphotyrosyl phosphatase activator proteins are required for a subset of the functions disrupted by protein phosphatase 2A mutations. Exp Cell Res264, 372387.
  • 80
    Douville J, David J, Lemieux KM, Gaudreau L & Ramotar D (2006) The Saccharomyces cerevisiae phosphatase activator RRD1 is required to modulate gene expression in response to rapamycin exposure. Genetics172, 13691372.
  • 81
    Jouvet N, Poschmann J, Douville J, Bulet L & Ramotar D (2010) Rrd1 isomerizes RNA polymerase II in response to rapamycin. BMC Mol Biol11, doi:10.1186/1471-2199-11-92.
  • 82
    Poschmann J, Drouin S, Jacques PE, El Fadili K, Newmarch M, Robert F & Ramotar D (2011) The peptidyl prolyl isomerase Rrd1 regulates the elongation of RNA polymerase II during transcriptional stresses. PLoS ONE6, e23159.
  • 83
    Douville J, David J, Fortier PK & Ramotar D (2004) The yeast phosphotyrosyl phosphatase activator protein, yPtpa1/Rrd1, interacts with Sit4 phosphatase to mediate resistance to 4-nitroquinoline-1-oxide and UVA. Curr Genet46, 7281.
  • 84
    Van Hoof C, Martens E, Longin S, Jordens J, Stevens I, Janssens V & Goris J (2005) Specific interactions of PP2A and PP2A-like phosphatases with the yeast PTPA homologues, Ypa1 and Ypa2. Biochem J386, 93102.
  • 85
    Zheng Y & Jiang Y (2005) The yeast phosphotyrosyl phosphatase activator is part of the Tap42–phosphatase complexes. Mol Biol Cell16, 21192127.
  • 86
    Baharians Z & Schönthal AH (1998) Autoregulation of protein phosphatase type 2A expression. J Biol Chem273, 1901919024.
  • 87
    Chung H & Brautigan DL (1999) Protein phosphatase 2A suppresses MAP kinase signalling and ectopic protein expression. Cell Signal11, 575580.
  • 88
    Koren R, Rainis L & Kleinberger T (2004) The scaffolding A/Tpd3 subunit and high phosphatase activity are dispensable for Cdc55 function in the Saccharomyces cerevisiae spindle checkpoint and in cytokinesis. J Biol Chem279, 4859848606.
  • 89
    Bennin DA, Don AS, Brake T, McKenzie JL, Rosenbaum H, Ortiz L, DePaoli-Roach AA & Horne MC (2002) Cyclin G2 associates with protein phosphatase 2A catalytic and regulatory B′ subunits in active complexes and induces nuclear aberrations and a G1/S phase cell cycle arrest. J Biol Chem277, 2744927467.
  • 90
    Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK & Weissman JS (2003) Global analysis of protein expression in yeast. Nature425, 737741.
  • 91
    Di Como CJ & Arndt KT (1996) Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev10, 19041916.
  • 92
    Murata K, Wu J & Brautigan DL (1997) B cell receptor-associated protein alpha4 displays rapamycin-sensitive binding directly to the catalytic subunit of protein phosphatase 2A. Proc Natl Acad Sci USA94, 1062410629.
  • 93
    Inui S, Sanjo H, Maeda K, Yamamoto H, Miyamoto E & Sakaguchi N (1998) Ig receptor binding protein 1 (alpha4) is associated with a rapamycin-sensitive signal transduction in lymphocytes through direct binding to the catalytic subunit of protein phosphatase 2A. Blood92, 539546.
  • 94
    Wang H, Wang X & Jiang Y (2003) Interaction with Tap42 is required for the essential function of Sit4 and type 2A phosphatases. Mol Biol Cell14, 43424351.
  • 95
    Prickett TD & Brautigan DL (2004) Overlapping binding sites in protein phosphatase 2A for association with regulatory A and alpha-4 (mTap42) subunits. J Biol Chem279, 3891238920.
  • 96
    Smetana JH, Oliveira CL, Jablonka W, Aguiar Pertinhez T, Carneiro FR, Montero-Lomeli M, Torriani I & Zanchin NI (2006) Low resolution structure of the human alpha4 protein (IgBP1) and studies on the stability of alpha4 and of its yeast ortholog Tap42. Biochim Biophys Acta1764, 724734.
  • 97
    Yang J, Roe SM, Prickett TD, Brautigan DL & Barford D (2007) The structure of Tap42/alpha4 reveals a tetratricopeptide repeat-like fold and provides insights into PP2A regulation. Biochemistry46, 88078815.
  • 98
    LeNoue-Newton M, Watkins GR, Zou P, Germane KL, McCorvey LR, Wadzinski BE & Spiller BW (2011) The E3 ubiquitin ligase- and protein phosphatase 2A (PP2A)-binding domains of the Alpha4 protein are both required for Alpha4 to inhibit PP2A degradation. J Biol Chem286, 1766517671.
  • 99
    Jiang Y & Broach JR (1999) Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast. EMBO J18, 27822792.
  • 100
    Gingras AC, Caballero M, Zarske M, Sanchez A, Hazbun TR, Fields S, Sonenberg N, Hafen E, Raught B & Aebersold R (2005) A novel, evolutionarily conserved protein phosphatase complex involved in cisplatin sensitivity. Mol Cell Proteomics4, 17251740.
  • 101
    Chung H, Nairn AC, Murata K & Brautigan DL (1999) Mutation of Tyr307 and Leu309 in the protein phosphatase 2A catalytic subunit favors association with the alpha 4 subunit which promotes dephosphorylation of elongation factor-2. Biochemistry38, 1037110376.
  • 102
    Wu J, Tolstykh T, Lee J, Boyd K, Stock JB & Broach JR (2000) Carboxyl methylation of the phosphoprotein phosphatase 2A catalytic subunit promotes its functional association with regulatory subunits in vivo. EMBO J19, 56725681.
  • 103
    Yoo SJS, Jimenez RH, Sanders JA, Boylan JM, Brautigan DL & Gruppuso PA (2008) The α4-containing form of protein phosphatase 2A in liver and hepatic cells. J Cell Biochem105, 290300.
  • 104
    Nanahoshi M, Tsujishita Y, Tokunaga C, Inui S, Sakaguchi N, Hara K & Yonezawa K (1999) Alpha4 protein as a common regulator of type 2A-related serine/threonine protein phosphatases. FEBS Lett446, 108112.
  • 105
    Chen J, Peterson RT & Schreiber SL (1998) Alpha 4 associates with protein phosphatases 2A, 4, and 6. Biochem Biophys Res Commun247, 827832.
  • 106
    Yan G, Shen X & Jiang Y (2006) Rapamycin activates Tap42-associated phosphatases by abrogating their association with Tor complex 1. EMBO J25, 35463555.
  • 107
    Nanahoshi M, Nishiuma T, Tsujishita Y, Hara K, Inui S, Sakaguchi N & Yonezawa K (1998) Regulation of protein phosphatase 2A catalytic activity by alpha4 protein and its yeast homolog Tap42. Biochem Biophys Res Commun251, 520526.
  • 108
    Kloeker S, Reed R, McConnell JL, Chang D, Tran K, Westphal RS, Law BK, Colbran RJ, Kamoun M, Campbell KS et al. (2003) Parallel purification of three catalytic subunits of the protein serine/threonine phosphatase 2A family [PP2A(C), PP4(C), and PP6(C)] and analysis of the interaction of PP2A(C) with alpha4 protein. Protein Expr Purif31, 1933.
  • 109
    Smetana JHC & Zanchin NIT (2007) Interaction analysis of the heterotrimer formed by the phosphatase 2A catalytic subunit, α4 and the mammalian ortholog of yeast Tip41 (TIPRL). FEBS J274, 58915904.
  • 110
    Nien WL, Dauphinee SM, Moffat LD & Too CK (2007) Overexpression of the mTOR alpha4 phosphoprotein activates protein phosphatase 2A and increases Stat1alpha binding to PIAS1. Mol Cell Endocrinol263, 1017.
  • 111
    Yamashita T, Inui S, Maeda K, Hua DR, Takagi K & Sakaguchi N (2005) The heterodimer of alpha4 and PP2Ac is associated with S6 kinase1 in B cells. Biochem Biophys Res Commun330, 439445.
  • 112
    Kong M, Fox CJ, Mu J, Solt L, Xu A, Cinalli RM, Birnbaum MJ, Lindsten T & Thompson CB (2004) The PP2A-associated protein alpha4 is an essential inhibitor of apoptosis. Science306, 695698.
  • 113
    Kong M, Ditsworth D, Lindsten T & Thompson CB (2009) Alpha4 is an essential regulator of PP2A phosphatase activity. Mol Cell36, 5160.
  • 114
    Li T, Huang P, Liang J, Fu W, Guo Z & Xu L (2011) Microcystin-LR (MCLR) induces a compensation of PP2A activity mediated by α4 protein in HEK293 cells. Int J Biol Sci7, 740752.
  • 115
    Prickett TD & Brautigan DL (2006) The α4 regulatory subunit exerts opposing allosteric effects on protein phosphatases PP6 and PP2A. J Biol Chem281, 3050330511.
  • 116
    Prickett TD & Brautigan DL (2007) Cytokine activation of p38 mitogen-activated protein kinase and apoptosis is opposed by alpha-4 targeting of protein phosphatase 2A for site-specific dephosphorylation of MEK3. Mol Cell Biol27, 42174227.
  • 117
    Liu J, Prickett TD, Elliott E, Meroni G & Brautigan DL (2001) Phosphorylation and microtubule association of the Opitz syndrome protein mid-1 is regulated by protein phosphatase 2A via binding to the regulatory subunit alpha 4. Proc Natl Acad Sci USA98, 66506655.
  • 118
    Trockenbacher A, Suckow V, Foerster J, Winter J, Krauss S, Ropers HH, Schneider R & Schweiger S (2001) MID1, mutated in Opitz syndrome, encodes an ubiquitin ligase that targets phosphatase 2A for degradation. Nat Genet29, 287294.
  • 119
    Short KM, Hopwood B, Yi Z & Cox TC (2002) MID1 and MID2 homo- and heterodimerise to tether the rapamycin-sensitive PP2A regulatory subunit, alpha 4, to microtubules: implications for the clinical variability of X-linked Opitz GBBB syndrome and other developmental disorders. BMC Cell Biol3, doi:10.1186/1471-2121-3-1.
  • 120
    McConnell JL, Watkins GR, Soss SE, Franz HS, McCorvey LR, Spiller BW, Chazin WJ & Wadzinski BE (2010) Alpha4 is a ubiquitin-binding protein that regulates protein serine/threonine phosphatase 2A ubiquitination. Biochemistry49, 17131718.
  • 121
    Aranda-Orgillés B, Aigner J, Kunath M, Lurz R, Schneider R & Schweiger S (2008) Active transport of the ubiquitin ligase MID1 along the microtubules is regulated by protein phosphatase 2A. PLoS ONE3, e3507.
  • 122
    Schweiger S & Schneider R (2003) The MID1/PP2A complex: a key to the pathogenesis of Opitz BBB/G syndrome. BioEssays25, 356366.
  • 123
    McDonald WJ, Sangster SM, Moffat LD, Henderson MJ & Too CK (2010) Alpha4 phosphoprotein interacts with EDD E3 ubiquitin ligase and poly(A)-binding protein. J Cell Biochem110, 11231129.
  • 124
    Inui S, Maeda K, Hua DR, Yamashita T, Yamamoto H, Miyamoto E, Aizawa S & Sakaguchi N (2002) BCR signal through alpha 4 is involved in S6 kinase activation and required for B cell maturation including isotype switching and V region somatic hypermutation. Int Immunol14, 177187.
  • 125
    Hua DR, Inui S, Yamashita T, Maeda K, Takagi K, Takeda J & Sakaguchi N (2003) T cell-specific gene targeting reveals that alpha4 is required for early T cell development. Eur J Immunol33, 18991906.
  • 126
    Kong M, Bui TV, Ditsworth D, Gruber JJ, Goncharov D, Krymskaya VP, Lindsten T & Thompson CB (2007) The PP2A-associated protein alpha4 plays a critical role in the regulation of cell spreading and migration. J Biol Chem282, 2971229720.
  • 127
    Han X, Du H & Massiah MA (2011) Detection and characterization of the in vitro E3 ligase activity of the human MID1 protein. J Mol Biol407, 505520.
  • 128
    Liu E, Knutzen CA, Krauss S, Schweiger S & Chiang GG (2011) Control of mTORC1 signaling by the Opitz syndrome protein MID1. Proc Natl Acad Sci USA108, 86808685.
  • 129
    Chen LP, Lai YD, Li DC, Zhu XN, Yang P, Li WX, Zhu W, Zhao J, Li XD, Xiao YM et al. (2011) α4 is highly expressed in carcinogen-transformed human cells and primary human cancers. Oncogene30, 29432953.
  • 130
    Sakashita S, Li D, Nashima N, Minami Y, Furuya S, Morishita Y, Tachibana K, Sato Y & Noguchi M (2011) Overexpression of immunoglobulin (CD79a) binding protein1 (IGBP-1) in small lung adenocarcinomas and its clinicopathological significance. Pathol Int61, 130137.
  • 131
    Jacinto E, Guo B, Arndt KT, Schmelzle T & Hall MN (2001) TIP41 interacts with TAP42 and negatively regulates the TOR signaling pathway. Mol Cell8, 10171026.
  • 132
    McConnell JL, Gomez RJ, McCorvey LRA, Law BK & Wadzinski BE (2007) Identification of a PP2A-interacting protein that functions as a negative regulator of phosphatase activity in the ATM/ATR signaling pathway. Oncogene26, 60216030.
  • 133
    Goudreault M, D’Ambrosio LM, Kean MJ, Mullin MJ, Larsen BG, Sanchez A, Chaudhry S, Chen GI, Sicheri F, Nesvizhskii AI et al. (2009) A PP2A phosphatase high density interaction network identifies a novel striatin-interacting phosphatase and kinase complex linked to the cerebral cavernous malformation 3 (CCM3) protein. Mol Cell Proteomics8, 157171.
  • 134
    Glatter T, Wepf A, Aebersold R & Gstaiger M (2009) An integrated workflow for charting the human interaction proteome: insights into the PP2A system. Mol Syst Biol5, doi:10.1038/msb.2008.75.
  • 135
    Kloeker S & Wadzinski BE (1999) Purification and identification of a novel subunit of protein serine/threonine phosphatase 4. J Biol Chem274, 53395347.
  • 136
    Wada T, Miyata T, Inagi R, Nangaku M, Wagatsuma M, Suzuki D, Wadzinski BE, Okubo K & Kurokawa K (2001) Cloning and characterization of a novel subunit of protein serine/threonine phosphatase 4 from mesangial cells. J Am Soc Nephrol12, 26012608.
  • 137
    Hastie CJ, Carnegie GK, Morrice N & Cohen PT (2000) A novel 50 kDa protein forms complexes with protein phosphatase 4 and is located at centrosomal microtubule organizing centres. Biochem J3, 845855.
  • 138
    Chen GI, Tisayakorn S, Jorgensen C, D’Ambrosio LM, Goudreault M & Gingras AC (2008) PP4R4/KIAA1622 forms a novel stable cytosolic complex with phosphoprotein phosphatase 4. J Biol Chem283, 2927329284.
  • 139
    Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O’Connor L, Li M et al. (2007) Large-scale mapping of human protein–protein interactions by mass spectrometry. Mol Syst Biol3, doi:10.1038/msb4100134.
  • 140
    Stefansson B & Brautigan DL (2006) Protein phosphatase 6 subunit with conserved Sit4-associated protein domain targets IkappaBepsilon. J Biol Chem281, 2262422634.
  • 141
    Stefansson B, Ohama T, Daugherty AE & Brautigan DL (2008) Protein phosphatase 6 regulatory subunits composed of ankyrin repeat domains. Biochemistry47, 14421451.
  • 142
    Kloeker S, Bryant JC, Strack S, Colbran RJ & Wadzinski BE (1997) Carboxymethylation of nuclear protein serine/threonine phosphatase X. Biochem J327, 481486.
  • 143
    Sontag E, Hladik C, Montgomery L, Luangpirom A, Mudrak I, Ogris E & White CL Jr (2004) Downregulation of protein phosphatase 2A carboxyl methylation and methyltransferase may contribute to Alzheimer disease pathogenesis. J Neuropathol Exp Neurol63, 10801091.
  • 144
    Bachovchin DA, Mohr JT, Speers AE, Wang C, Berlin JM, Spicer TP, Fernandez-Vega V, Chase P, Hodder PS, Schürer SC et al. (2011) Academic cross-fertilization by public screening yields a remarkable class of protein phosphatase methylesterase-1 inhibitors. Proc Natl Acad Sci USA108, 68116816.
  • 145
    Bachovchin DA, Zuhl AM, Speers AE, Wolfe MR, Weerapana E, Brown SJ, Rosen H & Cravatt BF (2011) Discovery and optimization of sulfonyl acrylonitriles as selective, covalent inhibitors of protein phosphatase methylesterase-1. J Med Chem54, 52295236.
  • 146
    Kickstein E, Krauss S, Thornhill P, Rutschow D, Zeller R, Sharkey J, Williamson R, Fuchs M, Köhler A, Glossmann H et al. (2010) Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A (PP2A) signaling. Proc Natl Acad Sci USA107, 2183021835.
  • 147
    Li D, Sakashita S, Morishita Y, Kano J, Shiba A, Sato T & Noguchi M (2011) Binding of lactoferrin to IGBP1 triggers apoptosis in a lung adenocarcinoma cell line. Anticancer Res31, 529534.