SEARCH

SEARCH BY CITATION

References

  • 1
    Jameson SC (2002) Maintaining the norm: T-cell homeostasis. Nat Rev Immunol2, 547556.
  • 2
    Murali-Krishna K, Altman JD, Suresh M, Sourdive DJ, Zajac AJ, Miller JD, Slansky J & Ahmed R (1998) Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity8, 177187.
  • 3
    Blattman JN, Antia R, Sourdive DJ, Wang X, Kaech SM, Murali-Krishna K, Altman JD & Ahmed R (2002) Estimating the precursor frequency of naive antigen-specific CD8 T cells. J Exp Med195, 657664.
  • 4
    Surh CD & Sprent J (2008) Homeostasis of naive and memory T cells. Immunity29, 848862.
  • 5
    Takeda S, Rodewald HR, Arakawa H, Bluethmann H & Shimizu T (1996) MHC class II molecules are not required for survival of newly generated CD4+ T cells, but affect their long-term life span. Immunity5, 217228.
  • 6
    Rooke R, Waltzinger C, Benoist C & Mathis D (1997) Targeted complementation of MHC class II deficiency by intrathymic delivery of recombinant adenoviruses. Immunity7, 123134.
  • 7
    Moses CT, Thorstenson KM, Jameson SC & Khoruts A (2003) Competition for self ligands restrains homeostatic proliferation of naive CD4 T cells. Proc Natl Acad Sci USA100, 11851190.
  • 8
    Hataye J, Moon JJ, Khoruts A, Reilly C & Jenkins MK (2006) Naive and memory CD4+ T cell survival controlled by clonal abundance. Science312, 114116.
  • 9
    Hochweller K, Wabnitz GH, Samstag Y, Suffner J, Hammerling GJ & Garbi N (2010) Dendritic cells control T cell tonic signaling required for responsiveness to foreign antigen. Proc Natl Acad Sci USA107, 59315936.
  • 9a
    Seddon B & Zamoyska R (2002) TCR signals mediated by SRC family kinases are essential for the survival of naive T cells. J Immuno169, 29973005.
  • 10
    Murali-Krishna K, Lau LL, Sambhara S, Lemonnier F, Altman J & Ahmed R (1999) Persistence of memory CD8 T cells in MHC class I-deficient mice. Science286, 13771381.
  • 11
    Lau LL, Jamieson BD, Somasundaram T & Ahmed R (1994) Cytotoxic T-cell memory without antigen. Nature369, 648652.
  • 12
    Swain SL, Hu H & Huston G (1999) Class II-independent generation of CD4 memory T cells from effectors. Science286, 13811383.
  • 13
    Prlic M, Lefrancois L & Jameson SC (2002) Multiple choices: regulation of memory CD8 T cell generation and homeostasis by interleukin (IL)-7 and IL-15. J Exp Med195, F49F52.
  • 14
    Kondrack RM, Harbertson J, Tan JT, Mcbreen ME, Surh CD & Bradley LM (2003) Interleukin 7 regulates the survival and generation of memory CD4 cells. J Exp Med198, 17971806.
  • 15
    Lenz DC, Kurz SK, Lemmens E, Schoenberger SP, Sprent J, Oldstone MB & Homann D (2004) IL-7 regulates basal homeostatic proliferation of antiviral CD4+ T cell memory. Proc Natl Acad Sci USA101, 93579362.
  • 16
    Purton JF, Tan JT, Rubinstein MP, Kim DM, Sprent J & Surh CD (2007) Antiviral CD4+ memory T cells are IL-15 dependent. J Exp Med204, 951961.
  • 17
    Seddon B, Tomlinson P & Zamoyska R (2003) Interleukin 7 and T cell receptor signals regulate homeostasis of CD4 memory cells. Nat Immunol4, 680686.
  • 18
    Nakajima H, Shores EW, Noguchi M & Leonard WJ (1997) The common cytokine receptor gamma chain plays an essential role in regulating lymphoid homeostasis. J Exp Med185, 189195.
  • 19
    Tan JT, Dudl E, Leroy E, Murray R, Sprent J, Weinberg KI & Surh CD (2001) IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc Natl Acad Sci USA98, 87328737.
  • 20
    Schluns KS, Kieper WC, Jameson SC & Lefrancois L (2000) Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat Immunol1, 426432.
  • 21
    Vivien L, Benoist C & Mathis D (2001) T lymphocytes need IL-7 but not IL-4 or IL-6 to survive in vivo. Int Immunol13, 763768.
  • 22
    Lodolce JP, Boone DL, Chai S, Swain RE, Dassopoulos T, Trettin S & Ma A (1998) IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity9, 669676.
  • 23
    Kennedy MK, Glaccum M, Brown SN, Butz EA, Viney JL, Embers M, Matsuki N, Charrier K, Sedger L, Willis CR et al. (2000) Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med191, 771780.
  • 24
    Jacobs SR, Michalek RD & Rathmell JC (2010) IL-7 is essential for homeostatic control of T cell metabolism in vivo. J Immunol184, 34613469.
  • 25
    Darnell JE Jr, Kerr IM & Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science264, 14151421.
  • 26
    Levy DE & Darnell JE Jr (2002) Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol3, 651662.
  • 27
    Nosaka T, Van Deursen JM, Tripp RA, Thierfelder WE, Witthuhn BA, Mcmickle AP, Doherty PC, Grosveld GC & Ihle JN (1995) Defective lymphoid development in mice lacking Jak3. Science270, 800802.
  • 28
    Thomis DC, Gurniak CB, Tivol E, Sharpe AH & Berg LJ (1995) Defects in B lymphocyte maturation and T lymphocyte activation in mice lacking Jak3. Science270, 794797.
  • 29
    Yao Z, Cui Y, Watford WT, Bream JH, Yamaoka K, Hissong BD, Li D, Durum SK, Jiang Q, Bhandoola A et al. (2006) Stat5a/b are essential for normal lymphoid development and differentiation. Proc Natl Acad Sci USA103, 10001005.
  • 30
    Meydan N, Grunberger T, Dadi H, Shahar M, Arpaia E, Lapidot Z, Leeder JS, Freedman M, Cohen A, Gazit A et al. (1996) Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature379, 645648.
  • 31
    Flex E, Petrangeli V, Stella L, Chiaretti S, Hornakova T, Knoops L, Ariola C, Fodale V, Clappier E, Paoloni F et al. (2008) Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia. J Exp Med205, 751758.
  • 32
    Vainchenker W, Dusa A & Constantinescu SN (2008) JAKs in pathology: role of Janus kinases in hematopoietic malignancies and immunodeficiencies. Semin Cell Dev Biol19, 385393.
  • 33
    Bessette K, Lang ML, Fava RA, Grundy M, Heinen J, Horne L, Spolski R, Al-Shami A, Morse HC III, Leonard WJ et al. (2008) A Stat5b transgene is capable of inducing CD8+ lymphoblastic lymphoma in the absence of normal TCR/MHC signaling. Blood111, 344350.
  • 34
    Kelly JA, Spolski R, Kovanen PE, Suzuki T, Bollenbacher J, Pise-Masison CA, Radonovich MF, Lee S, Jenkins NA, Copeland NG et al. (2003) Stat5 synergizes with T cell receptor/antigen stimulation in the development of lymphoblastic lymphoma. J Exp Med198, 7989.
  • 35
    Tonks NK (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol7, 833846.
  • 36
    Trowbridge IS & Thomas ML (1994) CD45: an emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development. Annu Rev Immunol12, 85116.
  • 37
    Majeti R, Xu Z, Parslow TG, Olson JL, Daikh DI, Killeen N & Weiss A (2000) An inactivating point mutation in the inhibitory wedge of CD45 causes lymphoproliferation and autoimmunity. Cell103, 10591070.
  • 38
    Kishihara K, Penninger J, Wallace VA, Kundig TM, Kawai K, Wakeham A, Timms E, Pfeffer K, Ohashi PS, Thomas ML et al. (1993) Normal B lymphocyte development but impaired T cell maturation in CD45-exon6 protein tyrosine phosphatase-deficient mice. Cell74, 143156.
  • 39
    Byth KF, Conroy LA, Howlett S, Smith AJ, May J, Alexander DR & Holmes N (1996) CD45-null transgenic mice reveal a positive regulatory role for CD45 in early thymocyte development, in the selection of CD4+CD8+ thymocytes, and B cell maturation. J Exp Med183, 17071718.
  • 40
    Koretzky GA, Picus J, Thomas ML & Weiss A (1990) Tyrosine phosphatase CD45 is essential for coupling T-cell antigen receptor to the phosphatidyl inositol pathway. Nature346, 6668.
  • 41
    Williams JC, Wierenga RK & Saraste M (1998) Insights into Src kinase functions: structural comparisons. Trends Biochem Sci23, 179184.
  • 42
    Saunders AE & Johnson P (2010) Modulation of immune cell signalling by the leukocyte common tyrosine phosphatase, CD45. Cell Signal22, 339348.
  • 43
    Hermiston ML, Xu Z & Weiss A (2003) CD45: a critical regulator of signaling thresholds in immune cells. Annu Rev Immunol21, 107137.
  • 44
    Irie-Sasaki J, Sasaki T, Matsumoto W, Opavsky A, Cheng M, Welstead G, Griffiths E, Krawczyk C, Richardson CD, Aitken K et al. (2001) CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature409, 349354.
  • 45
    Wu L, Bijian K & Shen SH (2009) CD45 recruits adapter protein DOK-1 and negatively regulates JAK-STAT signaling in hematopoietic cells. Mol Immunol46, 21672177.
  • 46
    Penninger JM, Irie-Sasaki J, Sasaki T & Oliveira-Dos-Santos AJ (2001) CD45: new jobs for an old acquaintance. Nat Immunol2, 389396.
  • 47
    Ratei R, Sperling C, Karawajew L, Schott G, Schrappe M, Harbott J, Riehm H & Ludwig WD (1998) Immunophenotype and clinical characteristics of CD45-negative and CD45-positive childhood acute lymphoblastic leukemia. Ann Hematol77, 107114.
  • 48
    Lorenz U (2009) SHP-1 and SHP-2 in T cells: two phosphatases functioning at many levels. Immunol Rev228, 342359.
  • 49
    Hof P, Pluskey S, Dhe-Paganon S, Eck MJ & Shoelson SE (1998) Crystal structure of the tyrosine phosphatase SHP-2. Cell92, 441450.
  • 50
    Pei D, Wang J & Walsh CT (1996) Differential functions of the two Src homology 2 domains in protein tyrosine phosphatase SH-PTP1. Proc Natl Acad Sci USA93, 11411145.
  • 51
    Dechert U, Adam M, Harder KW, Clark-Lewis I & Jirik F (1994) Characterization of protein tyrosine phosphatase SH-PTP2. Study of phosphopeptide substrates and possible regulatory role of SH2 domains. J Biol Chem269, 56025611.
  • 52
    Pei D, Lorenz U, Klingmuller U, Neel BG & Walsh CT (1994) Intramolecular regulation of protein tyrosine phosphatase SH-PTP1: a new function for Src homology 2 domains. Biochemistry33, 1548315493.
  • 53
    Townley R, Shen SH, Banville D & Ramachandran C (1993) Inhibition of the activity of protein tyrosine phosphate 1C by its SH2 domains. Biochemistry32, 1341413418.
  • 54
    Shultz LD, Schweitzer PA, Rajan TV, Yi T, Ihle JN, Matthews RJ, Thomas ML & Beier DR (1993) Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell73, 14451454.
  • 55
    Tsui HW, Siminovitch KA, De Souza L & Tsui FW (1993) Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene. Nat Genet4, 124129.
  • 56
    Kozlowski M, Mlinaric-Rascan I, Feng GS, Shen R, Pawson T & Siminovitch KA (1993) Expression and catalytic activity of the tyrosine phosphatase PTP1C is severely impaired in motheaten and viable motheaten mice. J Exp Med178, 21572163.
  • 57
    Johnson KG, Leroy FG, Borysiewicz LK & Matthews RJ (1999) TCR signaling thresholds regulating T cell development and activation are dependent upon SHP-1. J Immunol162, 38023813.
  • 58
    Chiang GG & Sefton BM (2001) Specific dephosphorylation of the Lck tyrosine protein kinase at Tyr-394 by the SHP-1 protein-tyrosine phosphatase. J Biol Chem276, 2317323178.
  • 59
    Lorenz U, Ravichandran KS, Burakoff SJ & Neel BG (1996) Lack of SHPTP1 results in src-family kinase hyperactivation and thymocyte hyperresponsiveness. Proc Natl Acad Sci USA93, 96249629.
  • 60
    Plas DR, Johnson R, Pingel JT, Matthews RJ, Dalton M, Roy G, Chan AC & Thomas ML (1996) Direct regulation of ZAP-70 by SHP-1 in T cell antigen receptor signaling. Science272, 11731176.
  • 61
    Brockdorff J, Williams S, Couture C & Mustelin T (1999) Dephosphorylation of ZAP-70 and inhibition of T cell activation by activated SHP1. Eur J Immunol29, 25392550.
  • 62
    Cuevas B, Lu Y, Watt S, Kumar R, Zhang J, Siminovitch KA & Mills GB (1999) SHP-1 regulates Lck-induced phosphatidylinositol 3-kinase phosphorylation and activity. J Biol Chem274, 2758327589.
  • 63
    Stebbins CC, Watzl C, Billadeau DD, Leibson PJ, Burshtyn DN & Long EO (2003) Vav1 dephosphorylation by the tyrosine phosphatase SHP-1 as a mechanism for inhibition of cellular cytotoxicity. Mol Cell Biol23, 62916299.
  • 64
    Lorenz U, Ravichandran KS, Pei D, Walsh CT, Burakoff SJ & Neel BG (1994) Lck-dependent tyrosyl phosphorylation of the phosphotyrosine phosphatase SH-PTP1 in murine T cells. Mol Cell Biol14, 18241834.
  • 65
    Stefanova I, Hemmer B, Vergelli M, Martin R, Biddison WE & Germain RN (2003) TCR ligand discrimination is enforced by competing ERK positive and SHP-1 negative feedback pathways. Nat Immunol4, 248254.
  • 66
    Fowler CC, Pao LI, Blattman JN & Greenberg PD (2010) SHP-1 in T cells limits the production of CD8 effector cells without impacting the formation of long-lived central memory cells. J Immunol185, 32563267.
  • 67
    Saxton TM, Henkemeyer M, Gasca S, Shen R, Rossi DJ, Shalaby F, Feng GS & Pawson T (1997) Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase Shp-2. EMBO J16, 23522364.
  • 68
    Qu CK, Nguyen S, Chen J & Feng GS (2001) Requirement of Shp-2 tyrosine phosphatase in lymphoid and hematopoietic cell development. Blood97, 911914.
  • 69
    Chan RJ, Johnson SA, Li Y, Yoder MC & Feng GS (2003) A definitive role of Shp-2 tyrosine phosphatase in mediating embryonic stem cell differentiation and hematopoiesis. Blood102, 20742080.
  • 70
    Xu D & Qu CK (2008) Protein tyrosine phosphatases in the JAK/STAT pathway. Front Biosci13, 49254932.
  • 71
    Stanford SM, Mustelin TM & Bottini N (2010) Lymphoid tyrosine phosphatase and autoimmunity: human genetics rediscovers tyrosine phosphatases. Semin Immunopathol32, 127136.
  • 72
    Begovich AB, Carlton VE, Honigberg LA, Schrodi SJ, Chokkalingam AP, Alexander HC, Ardlie KG, Huang Q, Smith AM, Spoerke JM et al. (2004) A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet75, 330337.
  • 73
    Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M, Macmurray J, Meloni GF, Lucarelli P, Pellecchia M et al. (2004) A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet36, 337338.
  • 74
    Zhang J, Zahir N, Jiang Q, Miliotis H, Heyraud S, Meng X, Dong B, Xie G, Qiu F, Hao Z et al. (2011) The autoimmune disease-associated PTPN22 variant promotes calpain-mediated Lyp/Pep degradation associated with lymphocyte and dendritic cell hyperresponsiveness. Nat Genet43, 902907.
  • 75
    Menard L, Saadoun D, Isnardi I, Ng YS, Meyers G, Massad C, Price C, Abraham C, Motaghedi R, Buckner JH et al. (2011) The PTPN22 allele encoding an R620W variant interferes with the removal of developing autoreactive B cells in humans. J Clin Invest121, 36353644.
  • 76
    Zikherman J, Hermiston M, Steiner D, Hasegawa K, Chan A & Weiss A (2009) PTPN22 deficiency cooperates with the CD45 E613R allele to break tolerance on a non-autoimmune background. J Immunol182, 40934106.
  • 77
    Cloutier JF & Veillette A (1996) Association of inhibitory tyrosine protein kinase p50csk with protein tyrosine phosphatase PEP in T cells and other hemopoietic cells. EMBO J15, 49094918.
  • 78
    Chow LM, Fournel M, Davidson D & Veillette A (1993) Negative regulation of T-cell receptor signalling by tyrosine protein kinase p50csk . Nature365, 156160.
  • 79
    Cloutier JF & Veillette A (1999) Cooperative inhibition of T-cell antigen receptor signaling by a complex between a kinase and a phosphatase. J Exp Med189, 111121.
  • 80
    Gjorloff-Wingren A, Saxena M, Williams S, Hammi D & Mustelin T (1999) Characterization of TCR-induced receptor-proximal signaling events negatively regulated by the protein tyrosine phosphatase PEP. Eur J Immunol29, 38453854.
  • 81
    Hasegawa K, Martin F, Huang G, Tumas D, Diehl L & Chan AC (2004) PEST domain-enriched tyrosine phosphatase (PEP) regulation of effector/memory T cells. Science303, 685689.
  • 82
    Davidson D, Shi X, Zhong MC, Rhee I & Veillette A (2010) The phosphatase PTP-PEST promotes secondary T cell responses by dephosphorylating the protein tyrosine kinase Pyk2. Immunity33, 167180.
  • 83
    Simoncic PD, McGlade CJ & Tremblay ML (2006) PTP1B and TC-PTP: novel roles in immune-cell signaling. Can J Physiol Pharmacol84, 667675.
  • 84
    Ten Hoeve J, De Jesus Ibarra-Sanchez M, Fu Y, Zhu W, Tremblay M, David M & Shuai K (2002) Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol Cell Biol22, 56625668.
  • 85
    Yamamoto T, Sekine Y, Kashima K, Kubota A, Sato N, Aoki N & Matsuda T (2002) The nuclear isoform of protein-tyrosine phosphatase TC-PTP regulates interleukin-6-mediated signaling pathway through STAT3 dephosphorylation. Biochem Biophys Res Commun297, 811817.
  • 86
    You-Ten KE, Muise ES, Itie A, Michaliszyn E, Wagner J, Jothy S, Lapp WS & Tremblay ML (1997) Impaired bone marrow microenvironment and immune function in T cell protein tyrosine phosphatase-deficient mice. J Exp Med186, 683693.
  • 87
    Bourdeau A, Dube N, Heinonen KM, Theberge JF, Doody KM & Tremblay ML (2007) TC-PTP-deficient bone marrow stromal cells fail to support normal B lymphopoiesis due to abnormal secretion of interferon-{gamma}. Blood109, 42204228.
  • 88
    Dupuis M, De Jesus Ibarra-Sanchez M, Tremblay ML & Duplay P (2003) Gr-1+ myeloid cells lacking T cell protein tyrosine phosphatase inhibit lymphocyte proliferation by an IFN-gamma- and nitric oxide-dependent mechanism. J Immunol171, 726732.
  • 89
    Wiede F, Shields BJ, Chew SH, Kyparissoudis K, Van Vliet C, Galic S, Tremblay ML, Russell SM, Godfrey DI & Tiganis T (2011) T cell protein tyrosine phosphatase attenuates T cell signaling to maintain tolerance in mice. J Clin Invest121, 47584774.
  • 90
    Simoncic PD, Lee-Loy A, Barber DL, Tremblay ML & McGlade CJ (2002) The T cell protein tyrosine phosphatase is a negative regulator of janus family kinases 1 and 3. Curr Biol12, 446453.
  • 91
    Kleppe M, Lahortiga I, El Chaar T, De Keersmaecker K, Mentens N, Graux C, Van Roosbroeck K, Ferrando AA, Langerak AW, Meijerink JP et al. (2010) Deletion of the protein tyrosine phosphatase gene PTPN2 in T-cell acute lymphoblastic leukemia. Nat Genet42, 530535.
  • 92
    Sergienko E, Xu J, Liu WH, Dahl R, Critton DA, Su Y, Brown BT, Chan X, Yang L, Bobkova EV et al. (2012) Inhibition of hematopoietic protein tyrosine phosphatase augments and prolongs ERK1/2 and p38 activation. ACS Chem Biol7, 367377.
  • 93
    Saxena M, Williams S, Brockdorff J, Gilman J & Mustelin T (1999) Inhibition of T cell signaling by mitogen-activated protein kinase-targeted hematopoietic tyrosine phosphatase (HePTP). J Biol Chem274, 1169311700.
  • 94
    Gronda M, Arab S, Iafrate B, Suzuki H & Zanke BW (2001) Hematopoietic protein tyrosine phosphatase suppresses extracellular stimulus-regulated kinase activation. Mol Cell Biol21, 68516858.
  • 95
    Francis DM, Rozycki B, Koveal D, Hummer G, Page R & Peti W (2011) Structural basis of p38alpha regulation by hematopoietic tyrosine phosphatase. Nat Chem Biol7, 916924.
  • 96
    Pettiford SM & Herbst R (2000) The MAP-kinase ERK2 is a specific substrate of the protein tyrosine phosphatase HePTP. Oncogene19, 858869.
  • 97
    Sozio MS, Mathis MA, Young JA, Walchli S, Pitcher LA, Wrage PC, Bartok B, Campbell A, Watts JD, Aebersold R et al. (2004) PTPH1 is a predominant protein-tyrosine phosphatase capable of interacting with and dephosphorylating the T cell receptor zeta subunit. J Biol Chem279, 77607769.
  • 98
    Bauler TJ, Hughes ED, Arimura Y, Mustelin T, Saunders TL & King PD (2007) Normal TCR signal transduction in mice that lack catalytically active PTPN3 protein tyrosine phosphatase. J Immunol178, 36803687.
  • 99
    Zhang Y, Reynolds JM, Chang SH, Martin-Orozco N, Chung Y, Nurieva RI & Dong C (2009) MKP-1 is necessary for T cell activation and function. J Biol Chem284, 3081530824.
  • 100
    Zhang Y, Blattman JN, Kennedy NJ, Duong J, Nguyen T, Wang Y, Davis RJ, Greenberg PD, Flavell RA & Dong C (2004) Regulation of innate and adaptive immune responses by MAP kinase phosphatase 5. Nature430, 793797.
  • 101
    Huang G, Wang Y, Shi LZ, Kanneganti TD & Chi H (2011) Signaling by the phosphatase MKP-1 in dendritic cells imprints distinct effector and regulatory T cell fates. Immunity35, 4558.
  • 102
    Blanchetot C, Chagnon M, Dube N, Halle M & Tremblay ML (2005) Substrate-trapping techniques in the identification of cellular PTP targets. Methods35, 4453.
  • 103
    Garton AJ, Burnham MR, Bouton AH & Tonks NK (1997) Association of PTP-PEST with the SH3 domain of p130cas; a novel mechanism of protein tyrosine phosphatase substrate recognition. Oncogene15, 877885.
  • 104
    Bourdeau A, Dube N & Tremblay ML (2005) Cytoplasmic protein tyrosine phosphatases, regulation and function: the roles of PTP1B and TC-PTP. Curr Opin Cell Biol17, 203209.
  • 105
    Edmonds SD & Ostergaard HL (2002) Dynamic association of CD45 with detergent-insoluble microdomains in T lymphocytes. J Immunol169, 50365042.
  • 106
    Fawcett VC & Lorenz U (2005) Localization of Src homology 2 domain-containing phosphatase 1 (SHP-1) to lipid rafts in T lymphocytes: functional implications and a role for the SHP-1 carboxyl terminus. J Immunol174, 28492859.
  • 107
    Seavitt JR, White LS, Murphy KM, Loh DY, Perlmutter RM & Thomas ML (1999) Expression of the p56(Lck) Y505F mutation in CD45-deficient mice rescues thymocyte development. Mol Cell Biol19, 42004208.
  • 108
    Mcneill L, Cassady RL, Sarkardei S, Cooper JC, Morgan G & Alexander DR (2004) CD45 isoforms in T cell signalling and development. Immunol Lett92, 125134.
  • 109
    Mcneill L, Salmond RJ, Cooper JC, Carret CK, Cassady-Cain RL, Roche-Molina M, Tandon P, Holmes N & Alexander DR (2007) The differential regulation of Lck kinase phosphorylation sites by CD45 is critical for T cell receptor signaling responses. Immunity27, 425437.