SEARCH

SEARCH BY CITATION

References

  • 1
    Shi Y (2009) Serine/threonine phosphatases: mechanism through structure. Cell139, 468484.
  • 2
    The Nobel prize in Physiology or medicine (1947)Nobel Lectures. Physiol Med194, 21962.
  • 3
    Fisher E, Pocker A & Saari JC (1970) The structure, function and control of glycogen phosphorylase. Essays Biochem6, 2368.
  • 4
    Green AA & Cori GT (1943) Crystalline muscle phosphorylase: I. Preparation, properties, and molecular weight. J Biol Chem151, 2129.
  • 5
    Cori GT & Cori CF (1945) The enzymatic conversion of phosphorylase a to b. J Biol Chem158, 321332.
  • 6
    Fischer EH & Krebs EG (1955) Conversion of phosphorylase b to phosphorylase a in muscle extracts. J Biol Chem216, 121132.
  • 7
    Krebs EG, Kent AB & Fischer EH (1958) The muscle phosphorylase b kinase reaction. J Biol Chem231, 7383.
  • 8
    Rasmussen H (1977) Calcium and cyclic nucleotides as universal second messengers. Soc Gen Physiol Ser32, 243268.
  • 9
    Brautigan DL & Shriner CL (1988) Methods of assay to distinguish various types of protein phosphatases. Methods Enzymol159, 339346.
  • 10
    Gratecos D, Detwiler TC, Hurd S & Fischer EH (1977) Rabbit muscle phosphorylase phosphatase. 1. Purification and chemical properties. Biochemistry16, 48124817.
  • 11
    Kikuchi K, Tamura S, Hiraga A & Tsuiki S (1977) Glycogen synthase phosphatase of rat liver. its separation from phosphotylase phosphatase on DE-52. Biochem Biophys Res Commun75, 2937.
  • 12
    Tamura S, Kikuchi K, Hiraga A, Kikuchi H, Hosokawa M & Tsuiki S (1978) Characterization of multiple forms of histone phosphatase in rat liver. Biochim Biophys Acta524, 349356.
  • 13
    Meisler MH & Langan TA (1969) Characterization of a phosphatase specific for phosphorylated histones and protamine. J Biol Chem244, 49614968.
  • 14
    Huang FL & Glinsmann WH (1976) Separation and characterization of two phosphorylase phosphatase inhibitors from rabbit skeletal muscle. Eur J Biochem70, 419426.
  • 15
    Brandt H, Killilea SD & Lee EYC (1974) Activation of phosphorylase phosphatase by a novel procedure: evidence for a regulatory mechanism involving the release of a catalytic subunit from enxyme-inhibitor complex(es) of higher molecular weight. Biochem Biophys Res Commun61, 598604.
  • 16
    Brandt H, Capulong ZL & Lee EYC (1975) Purification and properties of rabbit liver phosphorylase phosphatase. J Biol Chem250, 80388044.
  • 17
    Imaoka T, Imazu M, Usui H, Kinohara N & Takeda M (1980) Isolation of an inactive component from pig heart phosphoprotein phosphatase and its reassociation with an active component. Biochim Biophys Acta612, 7384.
  • 18
    Imazu M, Imaoka T, Usui H, Kinohara N & Takeda M (1981) Reconstitution of urea-dissociated subunits of a pig heart phosphoprotein phosphatase. J Biochem90, 851862.
  • 19
    Ingebritsen TS, Foulkes J & Cohen P (1980) The broad specificity protein phosphatase from mammalian liver. Separation of the Mr 35 000 catalytic subunit into two distinct enzymes. FEBS Lett119, 915.
  • 20
    Ingebritsen TW & Cohen P (1983) The protein phosphatases involved in cellular regulation. 1. Classification and substrate specificities. Eur J Biochem132, 255261.
  • 21
    Hubbard MJ & Cohen P (1993) On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem Sci18, 172177.
  • 22
    Haschke RH, Heilmeyer LMG Jr, Meyer F & Fischer EH (1970) Control of phosphorylase activity in a muscle glycogen particle: Part III. Regulation of phosphorylase phosphatase. J Biol Chem245, 66576663.
  • 23
    Strålfors P, Hiraga A & Cohen P (1985) The protein phosphatases involved in cellular regulation. Purification and characterisation of the glycogen-bound form of protein phosphatase-1 from rabbit skeletal muscle. Eur J Biochem149, 295303.
  • 24
    Tang PM, Bondor JA, Swiderek KM & DePaoli-Roach AA (1991) Molecular cloning and expression of the regulatory (RG1) subunit of the glycogen-associated protein phosphatase. J Biol Chem266, 1578215789.
  • 25
    Suzuki Y, Lanner C, Kim JH, Vilardo PG, Zhang H, Yang J, Cooper LD, Steele M, Kennedy A, Bock CB et al. (2001) Insulin control of glycogen metabolism in knockout mice lacking the muscle-specific protein phosphatase PP1G/RGL. Mol Cell Biol21, 26832694.
  • 26
    Egloff M, Johnson DF, Moorhead G, Cohen PTW, Cohen P & Barford D (1997) Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. EMBO J16, 18761887.
  • 27
    Doherty MJ, Moorhead G, Morrice N, Cohen P & Cohen PT (1995) Amino acid sequence and expression of the hepatic glycogen-binding (GL)-subunit of protein phosphatase-1. FEBS Lett375, 294298.
  • 28
    Doherty MJ, Young PR & Cohen PTW (1996) Amino acid sequence of a novel protein phosphatase 1 binding protein (R5) which is related to the liver- and muscle-specific glycogen binding subunits of protein phosphatase 1. FEBS Lett399, 339343.
  • 29
    Printen JA, Brady MJ & Saltiel AR (1997) PTG, a protein phosphatase 1-binding protein with a role in glycogen metabolism. Science (New York, NY)275, 14751478.
  • 30
    Armstrong CG, Browne GJ, Cohen P & Cohen PTW (1997) PPP1R6, a novel member of the family of glycogen-targetting subunits of protein phoshatase 1. FEBS Lett418, 210214.
  • 31
    Pato MD & Kerc E (1985) Purification and characterization of a smooth muscle myosin phosphatase from turkey gizzards. J Biol Chem260, 1235912366.
  • 32
    Okubo S, Ito M, Takashiba Y, Ichikawa K, Miyahara M, Shimizu H, Konishi T, Shima H, Nagao M & Hartshorne DJ (1994) A regulatory subunit of smooth muscle myosin bound phosphatase. Biochem Biophys Res Commun200, 429434.
  • 33
    Shimizu H, Ito M, Miyahara K, Ichikawa S, Okuob T, Konishi M, Naka M, Tanaka T, Hirano K & Hartshorne DJ (1994) Characterization of the myosin-binding subunit of smooth muscle myosin phosphatase. J Biol Chem269, 3040730411.
  • 34
    Alessi D, MacDougall LK, Sola MM, Ikebe M & Cohen P (1992) The control of protein phosphatase-1 by targeting subunits. The major myosin phosphatase in avian smooth muscle is a novel form of protein phosphatase-1. Eur J Biochem210, 10231035.
  • 35
    Shirazi A, Iizuka K, Fadden P, Mosse C, Somlyo AP, Somlyo AV & Haystead TAJ (1994) Purification and characterization of the mammalian myosin light chain phosphatase holoenzyme. The differential effects of the holoenzyme and its subunits on smooth muscle. J Biol Chem269, 3159831606.
  • 36
    Green DD, Yang SI & Mumby MC (1987) Molecular cloning and sequence analysis of the catalytic subunit of bovine type 2A protein phosphatase. Proc Natl Acad Sci USA84, 48804884.
  • 37
    Johnson GL, Brautigan DL, Shriner C, Jaspers S, Arino J, Mole JE, Miller TB Jr & Mumby MC (1987) Sequence homologies between type 1 and type 2A protein phosphatases. Mol Endocrinol1, 745748.
  • 38
    Arino J, Woon CW, Brautigan DL, Miller TB Jr & Johnson GL (1988) Human liver phosphatase 2A: cDNA and amino acid sequence of two catalytic subunit isotypes. Proc Natl Acad Sci USA85, 42524256.
  • 39
    Posas F, Casamayor A, Morral N & Ariño J (1992) Molecular cloning and analysis of a yeast protein phosphatase with an unusual amino-terminal region. J Biol Chem267, 1173411740.
  • 40
    Posas F, Clotet J, Muns MT, Corominas J, Casamayor A & Ariño J (1993) The gene PPG encodes a novel yeast protein phosphatase involved in glycogen accumulation. J Biol Chem268, 13491354.
  • 41
    Cohen PT (1997) Novel protein serine/threonine phosphatases: variety is the spice of life. Trends Biochem Sci22, 245251.
  • 42
    Ohkura H, Kinoshita N, Miyatani S, Toda T & Yanagida M (1989) The fission yeast dis2 gene required for chromosome disjoining encodes one of two putative type-1 protein phosphatases. Cell57, 9971007.
  • 43
    Booher R & Beach D (1989) Involvement of a type 1 protein phosphatase encoded by bws1+ in fission yeast mitotic control. Cell57, 10091016.
  • 44
    Yanagida M, Kinoshita N, Stone EM & Yamano H (1992) Protein phosphatases and cell division cycle control. Ciba Found Symp170, 130140.
  • 45
    Doonan JH & Morris NR (1989) The bimG gene of Aspergillus nidulans, which is required for completion of anaphase, encodes a homologue of mammalian phosphoprotein phosphatase. Cell57, 987996.
  • 46
    Doonan J, MacKintosh C, Osmani S, Cohen P, Bai G, Lee E & Morris N (1991) A cDNA encoding rabbit muscle protein phosphatase 1 alpha complements the Aspergillus cell cycle mutation, bimG11. J Biol Chem266, 1888918894.
  • 47
    Sutton A, Lin F & Arndt KT (1991) The SIT4 protein phosphatase is required in late G1 for progression into S phase. Cold Spring Harb Symp Quant Biol56, 7581.
  • 48
    Fernandez-Sarabia MJ, Sutton A, Zhong T & Arndt KT (1992) SIT4 protein phosphatase is required for the normal accumulation of SWI4, CLN1, CLN2, and HCS26 RNAs during late G1. Genes Dev6, 24172428.
  • 49
    Luke MM, Seta FD, DiComo CJ, Sugimoto H, Kobayashi R & Arndt KT (1996) The SAPs, a new family of proteins, associate and function positively with the SIT4 phosphatase. Mol Cell Biol16, 27442755.
  • 50
    Vincent JB & Averill BA (1990) Sequence homology between purple acid phosphatases and phosphoprotein phosphatases. Are phosphoprotein phosphatases metalloproteins containing oxide-bridged dinuclear metal centers?FEBS Lett263, 265268.
  • 51
    King MM & Huang CY (1984) The calmodulin-dependent activation and deactivation of the phosphoprotein phosphatase, calcineurin, and the effect of nucleotides, pyrophosphate, and divalent metal ions. Identification of calcineurin as a Zn and Fe metalloenzyme. J Biol Chem259, 88478856.
  • 52
    Nishito Y, Usui H, Shinzawa-Itoh K, Inoue R, Tanabe O, Nagase T, Murakami T & Takeda M (1999) Direct metal analyses of Mn2+-dependent and -independent protein phosphatase 2A from human erythrocytes detect zinc and iron only in the Mn2+-independent one. FEBS Lett447, 2933.
  • 53
    Mann DJ, Dombradi V & Cohen PT (1993) Drosophila protein phosphatase V functionally complements a SIT4 mutant in Saccharomyces cerevisiae and its amino-terminal region can confer this complementation to a heterologous phosphatase catalytic domain. EMBO J12, 48334842.
  • 54
    Bastians H & Ponstingl H (1996) The novel human protein serine/threonine phosphatase 6 is a functional homologue of budding yeast Sit4p and fission yeast ppe1, which are involved in cell cycle regulation. J Cell Sci109, 28652874.
  • 55
    Chen GI & Gingras A-C (2007) Affinity-purification mass spectrometry (AP-MS) of serine/threonine phosphatases. Methods42, 298305.
  • 56
    Shibata S, Ishida Y, Kitano H, Ohizumi Y, Habon J, Tsukitani Y & Kikuchi H (1982) Contractile effects of okadaic acid, a novel ionophore-like substance from black sponge, on isolated smooth muscles under the condition of Ca deficiency. J Pharmacol Exp Ther223, 135143.
  • 57
    Ozaki H, Ishihara H, Kohama K, Nonomura Y, Shibata S & Karaki H (1987) Calcium-independent phosphorylation of smooth muscle myosin light chain by okadaic acid isolated from black sponge (Halichondria okadai). J Pharmacol Exp Ther243, 11671173.
  • 58
    Takai A, Bialojan C, Troschka M & Rüegg JC (1987) Smooth muscle myosin phosphatase inhibition and force enhancement by black sponge toxin. FEBS Lett217, 8184.
  • 59
    Fujiki H & Suganuma M (1993) Tumor promotion by inhibitors of protein phosphatases 1 and 2A: the okadaic acid class of compounds. Adv Cancer Res61, 143194.
  • 60
    Favre B, Turowski P & Hemmings BA (1997) Differential inhibition and posttranslational modification of protein phosphatase 1 and 2A in MCF7 cells treated with calyculin-A, okadaic acid, and tautomycin. J Biol Chem272, 1385613863.
  • 61
    Walsh AH, Cheng A & Honkanen RE (1997) Fostriecin, an antitumor antibiotic with inhibitory activity against serine/threonine protein phosphatases types 1 (PP1) and 2A (PP2A), is highly selective for PP2A. FEBS Lett416, 230234.
  • 62
    Theiss WC, Carmichael W, Wyman J & Bruner R (1988) Blood pressure and hepatocellular effects of the cyclic heptapeptide toxin produced by the freshwater cyanobacterium (blue-green alga) Microcystis aeruginosa strain PCC-7820. Toxicon26, 603613.
  • 63
    Miura GA, Robinson N, Geisbert TW, Bostian KA, White JD & Pace JG (1989) Comparison of in vivo and in vitro toxic effects of microcystin-LR in fasted rats. Toxicon27, 12291240.
  • 64
    Hooser SB, Beasley V, Lovell RA, Carmichael WW & Haschek WM (1989) Toxicity of microcystin LR, a cyclic heptapeptide hepatotoxin from Microcystis aeruginosa, to rats and mice. Vet Pathol26, 246252.
  • 65
    Yoshizawa S, Matsushima R, Watanabe MF, Harada K, Ichihara A, Carmichael WW & Fujiki H (1990) Inhibition of protein phosphatases by microcystins and nodularin associated with hepatotoxicity. J Cancer Res Clin Oncol116, 609614.
  • 66
    MacKintosh C, Beattie KA, Klumpp S, Cohen P & Codd GA (1990) Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett264, 187192.
  • 67
    Honkanen RE, Zwiller J, Moore RE, Daily SL, Khatra BS, Dukelow M & Boynton AL (1990) Characterization of microcystin-LR, a potent inhibitor of type 1 and type 2A protein phosphatases. J Biol Chem265, 1940119404.
  • 68
    Moorhead G, MacKintosh RW, Morrice N, Gallagher T & MacKintosh C (1994) Purification of type 1 protein (serine/threonine) phosphatases by microcystin-Sepharose affinity chromatography. FEBS Lett356, 4650.
  • 69
    Moorhead GB, Haystead T & MacKintosh C (2007) Synthesis and use of the protein phosphatase affinity matrices microcystin-sepharose and microcystin-biotin-sepharose. Methods Mol Biol365, 3945.
  • 70
    MacKintosh RW, Dalby KN, Campbell DG, Cohen PT, Cohen P & MacKintosh C (1995) The cyanobacterial toxin microcystin binds covalently to cysteine-273 on protein phosphatase 1. FEBS Lett371, 236240.
  • 71
    Hayashi K, Yonemura S, Matsui T, Tsukita S & Tsukita S (1999) Immunofluorescence detection of exrin/radixin/moesin (ERM) proteins with their carboxyl-terminal threonine phosphorylated in cultured cells and tissues. Application of a novel fixation protocol using trichloroacetic acid (TCA) as a fixative. J Cell Sci112, 11491158.
  • 72
    Leach C, Shenolikar S & Brautigan DL (2003) Phosphorylation of phosphatase inhibitor-2 at centrosomes during mitosis. J Biol Chem278, 2601526020.
  • 73
    Goldberg J, Huang H-B, Kwon YG, Greengard P, Nairn AC & Kuriyan J (1995) Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. Nature376, 745753.
  • 74
    Egloff MP, Cohen PT, Reinemer P & Barford D (1995) Crystal structure of the catalytic subunit of human protein phosphatase 1 and its complex with tungstate. J Mol Biol254, 942959.
  • 75
    Hendrickx A, Beullens M, Ceulemans H, Den Abt T, Van Eynde A, Nicolaescu E, Lesage B & Bollen M (2009) Docking motif-guided mapping of the interactome of protein phosphatase-1. Chem Biol16, 365371.
  • 76
    Bollen M, Peti W, Ragusa MJ & Beullens M (2010) The extended PP1 toolkit: designed to create specificity. Trends Biochem Sci35, 450458.
  • 77
    Terrak M, Kerff F, Langsetmo K, Tao T & Dominguez R (2004) Structural basis of protein phosphatase 1 regulation. Nature429, 780784.
  • 78
    Ragusa MJ, Dancheck B, Critton DA, Nairn AC, Page R & Peti W (2010) Spinophilin directs protein phosphatase 1 specificity by blocking substrate binding sites. Nat Struct Mol Biol17, 459464.
  • 79
    Dancheck B, Ragusa MJ, Allaire M, Nairn AC, Page R & Peti W (2011) Molecular investigations of the structure and function of the protein phosphatase 1-spinophilin-inhibitor 2 heterotrimeric complex. Biochemistry50, 12381246.
  • 80
    Eto M, Elliott E, Prickett TD & Brautigan DL (2002) Inhibitor-2 regulates protein phosphatase-1 complexed with NimA-related kinase to induce centrosome separation. J Biol Chem277, 4401344020.
  • 81
    Li M, Satinover DL & Brautigan DL (2007) Phosphorylation and functions of inhibitor-2 family of proteins. Biochemistry46, 23802389.
  • 82
    Wang H & Brautigan DL (2002) A novel transmembrane Ser/Thr kinase complexes with protein phosphatase-1 and inhibitor-2. J Biol Chem277, 4960549612.
  • 83
    Terry-Lorenzo RT, Elliot E, Weiser DC, Prickett TD, Brautigan DL & Shenolikar S (2002) Neurabins recruit protein phosphatase-1 and inhibitor-2 to the actin cytoskeleton. J Biol Chem277, 4653546543.
  • 84
    Conner JH, Weiser DC, Li S, Hallenbeck JM & Shenolikar S (2001) Growth arrest and DNA damage-inducible protein GADD34 assembles a novel signaling complex containing protein phosphatase 1 and inhibitor 1. Mol Cell Biol21, 68416850.
  • 85
    Eto M (2009) Regulation of cellular protein phosphatase-1 (PP1) by phosphorylation of the CPI-17 family, C-kinase-activated PP1 inhibitors. J Biol Chem284, 3527335277.
  • 86
    Eto M, Kitazawa T & Brautigan DL (2004) Phosphoprotein inhibitor CPI-17 specificity depends on allosteric regulation of protein phosphatase-1 by regulatory subunits. Proc Natl Acad Sci USA101, 88888893.
  • 87
    Stipanovich A, Valjent E, Matamales M, Nishi A, Ahn JH, Maroteaux M, Bertran-Gonzalez J, Brami-Cherrier K, Enslen H, Corbillé AG et al. (2008) A phosphatase cascade by which rewarding stimuli control nucleosomal response. Nature453, 879884.
  • 88
    Dohadwala M, da Cruz e Silva EF, Hall FL, Williams RT, Carbonaro-Hall DA, Nairn AC, Greengard P & Berndt N (1994) Phosphorylation and inactivation of protein phosphatase 1 by cyclin-dependent kinases. Proc Natl Acad Sci USA91, 64086412.
  • 89
    Feng J, Ito M, Ichikawa K, Isaka N, Nishikawa M, Hartshorne DJ & Nakano T (1999) Inhibitory phosphorylation site for Rho-associated kinase on smooth muscle myosin phosphatase. J Biol Chem274, 3738537390.
  • 90
    Li HC, Price DJ & Tabarini D (1985) On the mechanism of regulation of type I phosphoprotein phosphatase from bovine heart. Regulation by a novel intracyclic activation-deactivation mechanism via transient phosphorylation of the regulatory subunit by phosphatase-1 kinase (FA). J Biol Chem260, 64166426.
  • 91
    Trinkle-Mulcahy L, Ichikawa K, Hartshorne DJ, Siegman MJ & Butler T (1995) Thiophosphorylation of the 130-kDa subunit is associated with a decreased activity of myosin light chain phosphoatase in a-toxin-permeabilized smooth muscle. J Biol Chem270, 1819118194.
  • 92
    Chen J, Parsons S & Brautigan DL (1994) Tyrosine phosphorylation of protein phosphatase 2A in response to growth stimulation and v-src transformation of fibroblasts. J Biol Chem269, 79577962.
  • 93
    Meyer F, Heilmeyer LMG Jr, Haschke RH & Fischer EH (1970) Control of phosphorylase activity in a muscle glycogen particle: Part I. Isolation and characterization of the protein-glycogen complex. J Biol Chem245, 66426648.
  • 94
    Groves MR, Hanlon N, Turowski P, Hemmings BA & Barford D (1999) The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell96, 99110.
  • 95
    Xu Y, Xing Y, Chen Y, Chao Y, Lin Z, Fan E, Yu JW, Strack S, Jeffrey PD & Shi Y (2006) Structure of the protein phosphatase 2A holoenzyme. Cell, 127, 12391251.
  • 96
    Cho US & Xu W (2007) Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature445, 5357.
  • 97
    Ruediger R, Hentz M, Fait J, Mumby M & Walter G (1994) Molecular model of the A subunit of protein phosphatase 2A: interaction with other subunits and tumor antigens. J Virol68, 123129.
  • 98
    Xu Z, Cetin B, Anger M, Cho US, Helmhart W, Nasmyth K & Xu W (2009) Structure and function of the PP2A-shugoshin interaction. Mol Cell35, 426441.
  • 99
    Li X, Scuderi A, Letsou A & Virshup DM (2002) B56-associated protein phosphatase 2A is required for survival and protects from apoptosis in Drosophila melanogaster. Mol Cell Biol22, 36743684.
  • 100
    Kremmer E, Ohst K, Kiefer J, Brewis N & Walter G (1997) Separation of PP2A core enzyme and holoenzyme with monoclonal antibodies against the regulatory A subunit: abundant expression of both forms in cells. Mol Cell Biol17, 16921701.
  • 101
    Ruediger R, Pham H & Walter G (2001) Alterations in protein phosphatase 2A subunit interaction in human carcinomas of the lung and colon with mutations in the A beta subunit gene. Oncogene20, 18921899.
  • 102
    Ruediger R, Ruiz J & Walter G (2011) Human cancer-associated mutations in the Aα subunit of protein phosphatase 2A increase lung cancer incidence in Aα knock-in and knockout mice. Mol Cell Biol31, 38323844.
  • 103
    Pallas DC, Shahrik LK, Martin BL, Jaspers S, Miller TB, Brautigan DL & Roberts TM (1990) Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell60, 167176.
  • 104
    Yang SI, Lickteig RL, Estes R, Rundell K, Walter G & Mumby MC (1991) Control of protein phosphatase 2A by simian virus 40 small-t antigen. Mol Cell Biol11, 19881995.
  • 105
    Walter G, Ruediger R, Slaughter C & Mumby M (1990) Association of protein phosphatase 2A with polyoma virus medium tumor antigen. Proc Natl Acad Sci USA87, 25212525.
  • 106
    Yang CS, Vitto MJ, Busby SA, Garcia BA, Kesler CT, Gioeli D, Shabanowitz J, Hunt DF, Rundell K, Brautigan DL et al. (2005) Simian virus 40 small t antigen mediates conformation-dependent transfer of protein phosphatase 2A onto the androgen receptor. Mol Cell Biol25, 12981308.
  • 107
    Moreno CS, Ramachandran S, Ashby DG, Laycock N, Plattner CA, Chen W, Hahn WC & Pallas DC (2004) Signaling and transcriptional changes critical for transformation of human cells by simian virus 40 small tumor antigen or protein phosphatase 2A B56gamma knockdown. Cancer Res64, 69786988.
  • 108
    Lee J & Stock J (1993) Protein phosphatase 2A catalytic subunit is metyl-esterified at its carboxyl terminus by a novel methyltransferase. J Biol Chem268, 1919119195.
  • 109
    Lee J, Chen Y, Tolstykh T & Stock J (1996) A specific protein carboxyl methylesterase that demethylates phosphoprotein phosphatase 2A in bovine brain. Proc Natl Acad Sci USA93, 60436047.
  • 110
    Chen J, Martin BL & Brautigan DL (1992) Regulation of protein serine-threonine phosphatase type-2A by tyrosine phosphorylation. Sci J257, 12611264.
  • 111
    Cayla X, Van Hoof C, Bosch M, Waelkens E, Vandekerckhove J, Peeters B, Merlevede W & Goris J (1994) Molecular cloning, expression, and characterization of PTPA, a protein that activates the tyrosyl phosphatase activity of protein phosphatase 2A. J Biol Chem269, 1566815675.
  • 112
    Jordens J, Janssens V, Longin S, Stevens I, Martens E, Bultynck G, Engelborghs Y, Lescrinier E, Waelkens E, Goris J et al. (2006) The protein phosphatase 2A phosphatase activator is a novel peptidyl-prolyl cis/trans-isomerase. J Biol Chem281, 63496357.
  • 113
    Van Hoof C, Martens E, Longin S, Jordens J, Stevens I, Janssens V & Goris J (2005) Specific interactions of PP2A and PP2A-like phosphatases with the yeast PTPA homologues, Ypa1 and Ypa2. Biochem J386, 93102.
  • 114
    Fellner T, Lackner D, Hombauer H, Piribauer P, Mudrak I, Zaragoza K, Juno C & Ogris E (2003) A novel and essential mechanism determining specificity and activity of protein phosphatase 2A (PP2A) in vivo. Genes Dev17, 21382150.
  • 115
    Hombauer H, Weismann D, Mudrak I, Stanzel C, Fellner T, Lackner DH & Ogris E (2007) Generation of active protein phosphatase 2A is coupled to holoenzyme assembly. PLoS Biol5, e155.
  • 116
    Li M, Guo H & Damuni Z (1995) Purification and characterization of two potent heat-stable protein inhibitors of protein phosphatase 2A from bovine kidney. Biochemistry34, 19881996.
  • 117
    Li M, Makkinje A & Damuni Z (1996) The myeloid leukemia-associated protein SET is a potent inhibitor of protein phosphatase 2A. J Biol Chem271, 1105911062.
  • 118
    Neviani P, Santhanam R, Trotta R, Notari M, Blaser BW, Liu S, Mao H, Chang JS, Galietta A, Uttam A et al. (2005) The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein. Cancer Cell8, 355368.
  • 119
    Christensen DJ, Ohkubo N, Oddo J, Van Kanegan MJ, Neil J, Li F, Colton CA & Vitek MP (2011) Apolipoprotein E and peptide mimetics modulate inflammation by binding the SET protein and activating protein phosphatase 2A. J Immunol186, 25352542.
  • 120
    Switzer CH, Cheng R, Vitek TM, Christensen DJ, Wink DA & Vitek MP (2011) Targeting SET/I(2)PP2A oncoprotein functions as a multi-pathway strategy for cancer therapy. Oncogene30, 25042513.
  • 121
    Junttila MR, Puustinen P, Niemelä M, Ahola R, Arnold H, Böttzauw T, Ala-aho R, Nielsen C, Ivaska J, Taya Y et al. (2007) CIP2A inhibits PP2A in human malignancies. Cell130, 5162.
  • 122
    Mochida S, Maslen S, Skehel M & Hunt T (2010) Greatwall phosphorylates an inhibitor of protein phosphatase 2A that is essential for mitosis. Science330, 16701673.
  • 123
    Gharbi-Ayachi A, Labbé J, Burgess A, Vigneron S, Strub JM, Brioudes E, Van-Dorsselaer A, Castro A & Lorca T (2010) The substrate of Greatwall kinase, Arpp19, controls mitosis by inhibiting protein phosphatase 2A. Science330, 16731677.
  • 124
    Klee CB, Crouch TH & Krinks MH (1979) Calcineurin: a calcium- and calmodulin-binding protein of the nervous system. Proc Natl Acad Sci USA76, 62706273.
  • 125
    Stewart AA, Ingebritsen T, Manalan A, Klee CB & Cohen P (1982) Discovery of a Ca2+- and calmodulin-dependent protein phosphatase: probable identity with calcineurin (CaM-BP80). FEBS Lett137, 8084.
  • 126
    Hilioti Z & Cunningham K (2003) The RCN family of calcineurin regulators. Biochem Biophys Res Commun311, 10891093.
  • 127
    Mehta S, Li H, Hogan PG & Cunningham KW (2009) Domain architecture of the regulators of calcineurin (RCANs) and identification of a divergent RCAN in yeast. Mol Cell Biol29, 27772793.
  • 128
    Harris CD, Ermak G & Davies KJ (2005) Multiple roles of the DSCR1 (Adapt78 or RCAN1) gene and its protein product calcipressin 1 (or RCAN1) in disease. Cell Mol Life Sci62, 24772486.
  • 129
    Roy J, Li H, Hogan PG & Cyert MS (2007) A conserved docking site modulates substrate affinity for calcineurin, signaling output, and in vivo function. Mol Cell25, 889901.
  • 130
    Wu H, Peisley A, Graef IA & Crabtree GR (2007) NFAT signaling and the invention of vertebrates. Trends Cell Biol17, 251260.
  • 131
    Li H, Rao A & Hogan PG (2011) Interaction of calcineurin with substrates and targeting proteins. Trends Cell Biol21, 91103.
  • 132
    de Jonge H, Naesens M & Kuypers DR (2009) New insights into the pharmacokinetics and pharmacodynamics of the calcineurin inhibitors and mycophenolic acid: possible consequences for therapeutic drug monitoring in solid organ transplantation. Ther Drug Monit31, 416435.
  • 133
    Brewis ND, Street AJ, Prescott AR & Cohen PT (1993) PPX, a novel protein serine/threonine phosphatase localized to centrosomes. EMBO J12, 987996.
  • 134
    Kloeker S & Wadzinski BE (1999) Purification and identification of a novel subunit of protein serine/threonine phosphatase 4. J Biol Chem274, 53395347.
  • 135
    Gingras AC, Caballero M, Zarske M, Sanchez A, Hazbun TR, Fields S, Sonenberg N, Hafen E, Raught B & Aebersold R (2005) A novel, evolutionarily conserved protein phosphatase complex involved in cisplatin sensitivity. Mol Cell Proteomics4, 17251740.
  • 136
    Hastie CJ, Vázquez-Martin C, Philp A, Stark MJ & Cohen PT (2006) The Saccharomyces cerevisiae orthologue of the human protein phosphatase 4 core regulatory subunit R2 confers resistance to the anticancer drug cisplatin. FEBS J273, 33223334.
  • 137
    Helps NR, Brewis ND, Lineruth K, Davis T, Kaiser K & Cohen PT (1998) Protein phosphatase 4 is an essential enzyme required for organisation of microtubules at centrosomes in Drosophila embryos. J Cell Sci111(Pt 10), 13311340.
  • 138
    Hastie CJ, Carnegie GK, Morrice N & Cohen PT (2000) A novel 50 kDa protein forms complexes with protein phosphatase 4 and is located at centrosomal microtubule organizing centres. Biochem J347(Pt 3), 845855.
  • 139
    Sumiyoshi E, Sugimoto A & Yamamoto M (2002) Protein phosphatase 4 is required for centrosome maturation in mitosis and sperm meiosis in C. elegans. J Cell Sci115, 14031410.
  • 140
    Shui JW, Hu MC & Tan TH (2007) Conditional knockout mice reveal an essential role of protein phosphatase 4 in thymocyte development and pre-T-cell receptor signaling. Mol Cell Biol27, 7991.
  • 141
    Zhou G, Mihindukulasuriya KA, MacCorkle-Chosnek RA, Van Hooser A, Hu MC, Brinkley BR & Tan TH (2002) Protein phosphatase 4 is involved in tumor necrosis factor-alpha-induced activation of c-Jun N-terminal kinase. J Biol Chem277, 63916398.
  • 142
    Chowdhury D, Xu X, Zhong X, Ahmed F, Zhong J, Liao J, Dykxhoorn DM, Weinstock DM, Pfeifer GP & Lieberman J (2008) A PP4-phosphatase complex dephosphorylates gamma-H2AX generated during DNA replication. Mol Cell31, 3346.
  • 143
    Lee DH, Pan Y, Kanner S, Sung P, Borowiec JA & Chowdhury D (2010) A PP4 phosphatase complex dephosphorylates RPA2 to facilitate DNA repair via homologous recombination. Nat Struct Mol Biol17, 365372.
  • 144
    Nakada S, Chen GI, Gingras A-C & Durocher D (2008) PP4 is a gamma H2AX phosphatase required for recovery from the DNA damage checkpoint. EMBO Rep9, 10191026.
  • 145
    Chen MX, McPartlin AE, Brown L, Chen YH, Barker HM & Cohen PT (1994) A novel human protein serine/threonine phosphatase, which possesses four tetratricopeptide repeat motifs and localizes to the nucleus. EMBO J13, 42784290.
  • 146
    Silverstein AM, Galigniana MD, Chen MS, Owens-Grillo JK, Chinkers M & Pratt WB (1997) Protein phosphatase 5 is a major component of glucocorticoid receptor.hsp90 complexes with properties of an FK506-binding immunophilin. J Biol Chem272, 1622416230.
  • 147
    Chen MX & Cohen PT (1997) Activation of protein phosphatase 5 by limited proteolysis or the binding of polyunsaturated fatty acids to the TPR domain. FEBS Lett400, 136140.
  • 148
    Kang H, Sayner SL, Gross KL, Russell LC & Chinkers M (2001) Identification of amino acids in the tetratricopeptide repeat and C-terminal domains of protein phosphatase 5 involved in autoinhibition and lipid activation. Biochemistry40, 1048510490.
  • 149
    Gentile S, Darden T, Erxleben C, Romeo C, Russo A, Martin N, Rossie S & Armstrong DL (2006) Rac GTPase signaling through the PP5 protein phosphatase. Proc Natl Acad Sci USA103, 52025206.
  • 150
    Chen M-S, Silverstein AM, Pratt WB & Chinkers M (1996) The tetratricopeptide repeat domain of protein phosphatase 5 mediates binding to glucocorticoid receptor heterocomplexes and acts as a dominant negative mutant. J Biol Chem271, 3231532320.
  • 151
    Arndt KT, Styles CA & Fink GR (1989) A suppressor of a HIS4 transcriptional defect encodes a protein with homology to the catalytic subunit of protein phosphatases. Cell56, 527537.
  • 152
    Goshima G, Iwasaki O, Obuse C & Yanagida M (2003) The role of Ppe1/PP6 phosphatase for equal chromosome segregation in fission yeast kinetochore. EMBO J22, 27522763.
  • 153
    Stefansson B & Brautigan DL (2006) Protein phosphatase 6 subunit with conserved Sit4-associated protein domain targets IkappaBepsilon. J Biol Chem281, 2262422634.
  • 154
    Zhong J, Liao J, Liu X, Wang P, Liu J, Hou W, Zhu B, Yao L, Wang J, Li J et al. (2011) Protein phosphatase PP6 is required for homology-directed repair of DNA double-strand breaks. Cell Cycle10, 14111419.
  • 155
    Mi J, Dziegielewski J, Bolesta E, Brautigan DL & Larner JM (2009) Activation of DNA-PK by ionizing radiation is mediated by protein phosphatase 6. PLoS One4, e4395.
  • 156
    Douglas P, Zhong J, Ye R, Moorhead GB, Xu X & Lees-Miller SP (2010) Protein phosphatase 6 interacts with the DNA-dependent protein kinase catalytic subunit and dephosphorylates gamma-H2AX. Mol Cell Biol30, 13681381.
  • 157
    Morales-Johansson H, Puria R, Brautigan DL & Cardenas ME (2009) Human protein phosphatase PP6 regulatory subunits provide Sit4-dependent and rapamycin-sensitive sap function in Saccharomyces cerevisiae. PLoS One4, e6331.
  • 158
    Stefansson B, Ohama T, Daugherty AE & Brautigan DL (2008) Protein phosphatase 6 regulatory subunits composed of ankyrin repeat domains. Biochemistry47, 14421451.
  • 159
    Hiraga A, Kikuchi K, Tamura S & Tsuiki S (1981) Purification and characterization of Mg2+-dependent glycogen synthase phosphatase (phosphoprotein phosphatase IA) from rat liver. Eur J Biochem119, 503510.
  • 160
    Tamura S, Lynch KR, Larner J, Fox J, Yasui A, Kikuchi K, Suzuki Y & Tsuiki S (1989) Molecular cloning of rat type 2C (IA) protein phosphatase mRNA. Proc Natl Acad Sci USA86, 17961800.
  • 161
    Das AK, Helps NR, Cohen PT & Barford D (1996) Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution. EMBO J15, 67986809.
  • 162
    Tamura S, Toriumi S, Saito J, Awano K, Kudo TA & Kobayashi T (2006) PP2C family members play key roles in regulation of cell survival and apoptosis. Cancer Sci97, 563567.
  • 163
    Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF et al. (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science324, 10681071.
  • 164
    Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A & Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science324, 10641068.
  • 165
    Schweighofer A, Hirt H & Meskiene I (2004) Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci9, 236243.
  • 166
    Schweighofer A, Kazanaviciute V, Scheikl E, Teige M, Doczi R, Hirt H, Schwanninger M, Kant M, Schuurink R, Mauch F et al. (2007) The PP2C-type phosphatase AP2C1, which negatively regulates MPK4 and MPK6, modulates innate immunity, jasmonic acid, and ethylene levels in Arabidopsis. Plant Cell19, 22132224.
  • 167
    Brautigan DL, Brown M, Grindrod S, Chinigo G, Kruszewski A, Lukasik SM, Bushweller JH, Horal M, Keller S, Tamura S et al. (2005) Allosteric activation of protein phosphatase 2C by D-chiro-inositol-galactosamine, a putative mediator mimetic of insulin action. Biochemistry44, 1106711073.
  • 168
    Fiscella M, Zhang H, Fan S, Sakaguchi K, Shen S, Mercer WE, Vande Woude GF, O’Connor PM & Appella E (1997) Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proc Natl Acad Sci USA94, 60486053.
  • 169
    Takekawa M, Adachi M, Nakahata A, Nakayama I, Itoh F, Tsukuda H, Taya Y & Imai K (2000) p53-inducible wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. EMBO J19, 65176526.
  • 170
    Shreeram S, Demidov ON, Hee WK, Yamaguchi H, Onishi N, Kek C, Timofeev ON, Dudgeon C, Fornace AJ, Anderson CW et al. (2006) Wip1 phosphatase modulates ATM-dependent signaling pathways. Mol Cell23, 757764.
  • 171
    Yamaguchi H, Durell SR, Chatterjee DK, Anderson CW & Appella E (2007) The Wip1 phosphatase PPM1D dephosphorylates SQ/TQ motifs in checkpoint substrates phosphorylated by PI3K-like kinases. Biochemistry46, 1259412603.
  • 172
    Ofek P, Ben-Meir D, Kariv-Inbal Z, Oren M & Lavi S (2003) Cell cycle regulation and p53 activation by protein phosphatase 2C alpha. J Biol Chem278, 1429914305.
  • 173
    Allemand E, Hastings ML, Murray MV, Myers MP & Krainer AR (2007) Alternative splicing regulation by interaction of phosphatase PP2Cgamma with nucleic acid-binding protein YB-1. Nat Struct Mol Biol14, 630638.
  • 174
    Gao T, Furnari F & Newton AC (2005) PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell18, 1324.
  • 175
    Brognard J, Sierecki E, Gao T & Newton AC (2007) PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell25, 917931.
  • 176
    Qiao M, Wang Y, Xu X, Lu J, Dong Y, Tao W, Stein J, Stein GS, Iglehart JD, Shi Q et al. (2010) Mst1 is an interacting protein that mediates PHLPPs’ induced apoptosis. Mol Cell38, 512523.
  • 177
    Yeo M & Lin PS (2007) Functional characterization of small CTD phosphatases. Methods Mol Biol365, 335346.
  • 178
    Ghosh A, Shuman S & Lima CD (2008) The structure of Fcp1, an essential RNA polymerase II CTD phosphatase. Mol Cell32, 478490.
  • 179
    Kamenski T, Heilmeier S, Meinhart A & Cramer P (2004) Structure and mechanism of RNA polymerase II CTD phosphatases. Mol Cell15, 399407.
  • 180
    Gohla A, Birkenfeld J & Bokoch GM (2005) Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nat Cell Biol7, 2129.
  • 181
    Takeda K, Komuro Y, Hayakawa T, Oguchi H, Ishida Y, Murakami S, Noguchi T, Kinoshita H, Sekine Y, Iemura S et al. (2009) Mitochondrial phosphoglycerate mutase 5 uses alternate catalytic activity as a protein serine/threonine phosphatase to activate ASK1. Proc Natl Acad Sci USA106, 1230112305.
  • 182
    Baharians Z & Schonthal AH (1998) Autoregulation of protein phosphatase type 2A expression. J Biol Chem273, 1901919024.
  • 183
    Chung H & Brautigan DL (1999) Protein phosphatase 2A suppresses MAP kinase signalling and ectopic protein expression. Cell Signal11, 575580.
  • 184
    Chen J, Peterson RT & Schreiber SL (1998) α4 Associates with protein phosphatases 2A, 4 and 6. Biochim Biophys Acta247, 827832.
  • 185
    Trockenbacher A, Suckow V, Foerster J, Winter J, Krauss S, Ropers HH, Schneider R & Schweiger S (2001) MID1, mutated in Opitz syndrome, encodes an ubiquitin ligase that targets phosphatase 2A for degradation. Nat Genet29, 287294.
  • 186
    Alessi DR, Street AJ, Cohen P & Cohen PTW (1993) Inhibitor-2 functions like a chaperone to fold three expressed isoforms of mammalian protein phosphatase-1 into a conformation with the specificity and regulatory properties of the native enzyme. Eur J Biochem213, 10551066.
  • 187
    MacKintosh C, Garton AJ, McDonnell A, Barford D & Cohen PTW (1996) Further evidence that inhibitor-2 acts like a chaperone to fold PP1 into its native conformation. FEBS Lett397, 235238.