SEARCH

SEARCH BY CITATION

References

  • 1
    Koonin EV & Tatusov RL (1994) Computer analysis of bacterial haloacid dehalogenases defines a large superfamily of hydrolases with diverse specificity. Application of an iterative approach to database search. J Mol Biol244, 125132.
  • 2
    Allen KN & Dunaway-Mariano D (2009) Markers of fitness in a successful enzyme superfamily. Curr Opin Struct Biol19, 658665.
  • 3
    Aravind L, Galperin MY & Koonin EV (1998) The catalytic domain of the P-type ATPase has the haloacid dehalogenase fold. Trends Biochem Sci23, 127129.
  • 4
    Alonso A, Sasin J, Bottini N, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J & Mustelin T (2004) Protein tyrosine phosphatases in the human genome. Cell117, 699711.
  • 5
    Tonks NK (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol7, 833846.
  • 6
    Barford D, Das AK & Egloff MP (1998) The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu Rev Biophys Biomol Struct27, 133164.
  • 7
    Shi Y (2009) Serine/threonine phosphatases: mechanism through structure. Cell139, 468484.
  • 8
    Yeo M, Lin PS, Dahmus ME & Gill GN (2003) A novel RNA polymerase II C-terminal domain phosphatase that preferentially dephosphorylates serine 5. J Biol Chem278, 2607826085.
  • 9
    Archambault J, Pan G, Dahmus GK, Cartier M, Marshall N, Zhang S, Dahmus ME & Greenblatt J (1998) FCP1, the RAP74-interacting subunit of a human protein phosphatase that dephosphorylates the carboxyl-terminal domain of RNA polymerase IIO. J Biol Chem273, 2759327601.
  • 10
    Tootle TL, Silver SJ, Davies EL, Newman V, Latek RR, Mills IA, Selengut JD, Parlikar BE & Rebay I (2003) The transcription factor Eyes absent is a protein tyrosine phosphatase. Nature426, 299302.
  • 11
    Li X, Oghi KA, Zhang J, Krones A, Bush KT, Glass CK, Nigam SK, Aggarwal AK, Maas R, Rose DW et al. (2003) Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis. Nature426, 247254.
  • 12
    Rayapureddi JP, Kattamuri C, Steinmetz BD, Frankfort BJ, Ostrin EJ, Mardon G & Hegde RS (2003) Eyes absent represents a class of protein tyrosine phosphatases. Nature426, 295298.
  • 13
    Moorhead GB, Trinkle-Mulcahy L & Ulke-Lemee A (2007) Emerging roles of nuclear protein phosphatases. Nat Rev Mol Cell Biol8, 234244.
  • 14
    Burroughs AM, Allen KN, Dunaway-Mariano D & Aravind L (2006) Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes. J Mol Biol361, 10031034.
  • 15
    Wang W, Kim R, Jancarik J, Yokota H & Kim SH (2001) Crystal structure of phosphoserine phosphatase from Methanococcus jannaschii, a hyperthermophile, at 1.8 A resolution. Structure9, 6571.
  • 16
    Kim HY, Heo YS, Kim JH, Park MH, Moon J, Kim E, Kwon D, Yoon J, Shin D, Jeong EJ et al. (2002) Molecular basis for the local conformational rearrangement of human phosphoserine phosphatase. J Biol Chem277, 4665146658.
  • 17
    Allen KN & Dunaway-Mariano D (2004) Phosphoryl group transfer: evolution of a catalytic scaffold. Trends Biochem Sci29, 495503.
  • 18
    Peisach E, Selengut JD, Dunaway-Mariano D & Allen KN (2004) X-ray crystal structure of the hypothetical phosphotyrosine phosphatase MDP-1 of the haloacid dehalogenase superfamily. Biochemistry43, 1277012779.
  • 19
    Zhang Y, Kim Y, Genoud N, Gao J, Kelly JW, Pfaff SL, Gill GN, Dixon JE & Noel JP (2006) Determinants for dephosphorylation of the RNA polymerase II C-terminal domain by Scp1. Mol Cell24, 759770.
  • 20
    Kamenski T, Heilmeier S, Meinhart A & Cramer P (2004) Structure and mechanism of RNA polymerase II CTD phosphatases. Mol Cell15, 399407.
  • 21
    Bernstein NK, Williams RS, Rakovszky ML, Cui D, Green R, Karimi-Busheri F, Mani RS, Galicia S, Koch CA, Cass CE et al. (2005) The molecular architecture of the mammalian DNA repair enzyme, polynucleotide kinase. Mol Cell17, 657670.
  • 22
    Jung SK, Jeong DG, Chung SJ, Kim JH, Park BC, Tonks NK, Ryu SE & Kim SJ (2010) Crystal structure of ED-Eya2: insight into dual roles as a protein tyrosine phosphatase and a transcription factor. FASEB J24, 560569.
  • 23
    Almo SC, Bonanno JB, Sauder JM, Emtage S, Dilorenzo TP, Malashkevich V, Wasserman SR, Swaminathan S, Eswaramoorthy S, Agarwal R et al. (2007) Structural genomics of protein phosphatases. J Struct Funct Genomics8, 121140.
  • 24
    Lu Z, Wang L, Dunaway-Mariano D & Allen KN (2009) Structure-function analysis of 2-keto-3-deoxy-D-glycero-D-galactonononate-9-phosphate phosphatase defines specificity elements in type C0 haloalkanoate dehalogenase family members. J Biol Chem284, 12241233.
  • 25
    Gohla A, Birkenfeld J & Bokoch GM (2005) Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nat Cell Biol7, 2129.
  • 26
    Rinaldo-Matthis A, Rampazzo C, Reichard P, Bianchi V & Nordlund P (2002) Crystal structure of a human mitochondrial deoxyribonucleotidase. Nat Struct Biol9, 779787.
  • 27
    Lahiri SD, Zhang G, Dunaway-Mariano D & Allen KN (2006) Diversification of function in the haloacid dehalogenase enzyme superfamily: the role of the cap domain in hydrolytic phosphoruscarbon bond cleavage. Bioorg Chem34, 394409.
  • 28
    Wang L, Huang H, Nguyen HH, Allen KN, Mariano PS & Dunaway-Mariano D (2010) Divergence of biochemical function in the HAD superfamily: D-glycero-D-manno-heptose-1,7-bisphosphate phosphatase (GmhB). Biochemistry49, 10721081.
  • 29
    Collet JF, Stroobant V & Van Schaftingen E (1999) Mechanistic studies of phosphoserine phosphatase, an enzyme related to P-type ATPases. J Biol Chem274, 3398533990.
  • 30
    Ridder IS & Dijkstra BW (1999) Identification of the Mg2+-binding site in the P-type ATPase and phosphatase members of the HAD (haloacid dehalogenase) superfamily by structural similarity to the response regulator protein CheY. Biochem J, 339(Pt 2), 223226.
  • 31
    Bailey TL & Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol2, 2836.
  • 32
    Virshup DM & Shenolikar S (2009) From promiscuity to precision: protein phosphatases get a makeover. Mol Cell33, 537545.
  • 33
    Quental R, Moleirinho A, Azevedo L & Amorim A (2010) Evolutionary history and functional diversification of phosphomannomutase genes. J Mol Evol71, 119127.
  • 34
    Force A, Lynch M, Pickett FB, Amores A, Yan YL & Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics151, 15311545.
  • 35
    Kerk D, Templeton G & Moorhead GB (2008) Evolutionary radiation pattern of novel protein phosphatases revealed by analysis of protein data from the completely sequenced genomes of humans, green algae, and higher plants. Plant Physiol146, 351367.
  • 36
    Kim Y, Gentry MS, Harris TE, Wiley SE, Lawrence JC Jr & Dixon JE (2007) A conserved phosphatase cascade that regulates nuclear membrane biogenesis. Proc Nat Acad Sci USA104, 65966601.
  • 37
    Newman JW, Morisseau C, Harris TR & Hammock BD (2003) The soluble epoxide hydrolase encoded by EPXH2 is a bifunctional enzyme with novel lipid phosphate phosphatase activity. Proc Nat Acad Sci USA100, 15581563.
  • 38
    Rebay I, Silver SJ & Tootle TL (2005) New vision from Eyes absent: transcription factors as enzymes. Trends Genet21, 163171.
  • 39
    Csaki LS & Reue K (2010) Lipins: multifunctional lipid metabolism proteins. Annu Rev Nutr30, 257272.
  • 40
    Ghosh A, Shuman S & Lima CD (2008) The structure of Fcp1, an essential RNA polymerase II CTD phosphatase. Mol Cell32, 478490.
  • 41
    Zheng H, Ji C, Gu S, Shi B, Wang J, Xie Y & Mao Y (2005) Cloning and characterization of a novel RNA polymerase II C-terminal domain phosphatase. Biochem Biophys Res Commun331, 14011407.
  • 42
    Amberger J, Bocchini C & Hamosh A (2011) A new face and new challenges for Online Mendelian Inheritance in Man (OMIM(R)). Hum Mutat32, 564567.
  • 43
    Samuels ME & Rouleau GA (2011) The case for locus-specific databases. Nat Rev Genet12, 378379.
  • 44
    Varon R, Gooding R, Steglich C, Marns L, Tang H, Angelicheva D, Yong KK, Ambrugger P, Reinhold A, Morar B et al. (2003) Partial deficiency of the C-terminal-domain phosphatase of RNA polymerase II is associated with congenital cataracts facial dysmorphism neuropathy syndrome. Nat Genet35, 185189.
  • 45
    Yeo M, Lee SK, Lee B, Ruiz EC, Pfaff SL & Gill GN (2005) Small CTD phosphatases function in silencing neuronal gene expression. Science307, 596600.
  • 46
    Zhang M, Liu J, Kim Y, Dixon JE, Pfaff SL, Gill GN, Noel JP & Zhang Y (2010) Structural and functional analysis of the phosphoryl transfer reaction mediated by the human small C-terminal domain phosphatase, Scp1. Protein Sci19, 974986.
  • 47
    Zhang M, Cho EJ, Burstein G, Siegel D & Zhang Y (2011) Selective inactivation of a human neuronal silencing phosphatase by a small molecule inhibitor. ACS Chem Biol6, 511519.
  • 48
    Wu Y, Evers BM & Zhou BP (2009) Small C-terminal domain phosphatase enhances snail activity through dephosphorylation. J Biol Chem284, 640648.
  • 49
    Sapkota G, Knockaert M, Alarcon C, Montalvo E, Brivanlou AH & Massague J (2006) Dephosphorylation of the linker regions of Smad1 and Smad2/3 by small C-terminal domain phosphatases has distinct outcomes for bone morphogenetic protein and transforming growth factor-beta pathways. J Biol Chem281, 4041240419.
  • 50
    Wrighton KH, Willis D, Long J, Liu F, Lin X & Feng XH (2006) Small C-terminal domain phosphatases dephosphorylate the regulatory linker regions of Smad2 and Smad3 to enhance transforming growth factor-beta signaling. J Biol Chem281, 3836538375.
  • 51
    Kashuba VI, Li J, Wang F, Senchenko VN, Protopopov A, Malyukova A, Kutsenko AS, Kadyrova E, Zabarovska VI, Muravenko OV et al. (2004) RBSP3 (HYA22) is a tumor suppressor gene implicated in major epithelial malignancies. Proc Nat Acad Sci USA101, 49064911.
  • 52
    Branzei D & Foiani M (2008) Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol9, 297308.
  • 53
    Weinfeld M, Mani RS, Abdou I, Aceytuno RD & Glover JN (2011) Tidying up loose ends: the role of polynucleotide kinase/phosphatase in DNA strand break repair. Trends Biochem Sci36, 262271.
  • 54
    Diderich K, Alanazi M & Hoeijmakers JH (2011) Premature aging and cancer in nucleotide excision repair-disorders. DNA Repair10, 772780.
  • 55
    El-Khamisy SF (2011) To live or to die: a matter of processing damaged DNA termini in neurons. EMBO Mol Med3, 7888.
  • 56
    Lord CJ & Ashworth A (2012) The DNA damage response and cancer therapy. Nature481, 287294.
  • 57
    Dobson CJ & Allinson SL (2006) The phosphatase activity of mammalian polynucleotide kinase takes precedence over its kinase activity in repair of single strand breaks. Nucleic Acids Res34, 22302237.
  • 58
    Shen J, Gilmore EC, Marshall CA, Haddadin M, Reynolds JJ, Eyaid W, Bodell A, Barry B, Gleason D, Allen K et al. (2010) Mutations in PNKP cause microcephaly, seizures and defects in DNA repair. Nat Genet42, 245249.
  • 59
    Freschauf GK, Karimi-Busheri F, Ulaczyk-Lesanko A, Mereniuk TR, Ahrens A, Koshy JM, Rasouli-Nia A, Pasarj P, Holmes CF, Rininsland F et al. (2009) Identification of a small molecule inhibitor of the human DNA repair enzyme polynucleotide kinase/phosphatase. Cancer Res69, 77397746.
  • 60
    Cronin A, Mowbray S, Durk H, Homburg S, Fleming I, Fisslthaler B, Oesch F & Arand M (2003) The N-terminal domain of mammalian soluble epoxide hydrolase is a phosphatase. Proc Nat Acad Sci USA100, 15521557.
  • 61
    EnayetAllah AE, Luria A, Luo B, Tsai HJ, Sura P, Hammock BD & Grant DF (2008) Opposite regulation of cholesterol levels by the phosphatase and hydrolase domains of soluble epoxide hydrolase. J Biol Chem283, 3659236598.
  • 62
    Monti J, Fischer J, Paskas S, Heinig M, Schulz H, Gosele C, Heuser A, Fischer R, Schmidt C, Schirdewan A et al. (2008) Soluble epoxide hydrolase is a susceptibility factor for heart failure in a rat model of human disease. Nat Genet40, 529537.
  • 63
    Fornage M, Boerwinkle E, Doris PA, Jacobs D, Liu K & Wong ND (2004) Polymorphism of the soluble epoxide hydrolase is associated with coronary artery calcification in African-American subjects: The Coronary Artery Risk Development in Young Adults (CARDIA) study. Circulation109, 335339.
  • 64
    Ingraham RH, Gless RD & Lo HY (2011) Soluble epoxide hydrolase inhibitors and their potential for treatment of multiple pathologic conditions. Curr Med Chem18, 587603.
  • 65
    Imig JD & Hammock BD (2009) Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nat Rev Drug Discovery8, 794805.
  • 66
    Hunsucker SA, Mitchell BS & Spychala J (2005) The 5′-nucleotidases as regulators of nucleotide and drug metabolism. Pharmacol Ther107, 130.
  • 67
    Bianchi V & Spychala J (2003) Mammalian 5′-nucleotidases. J Biol Chem278, 4619546198.
  • 68
    Rampazzo C, Miazzi C, Franzolin E, Pontarin G, Ferraro P, Frangini M, Reichard P & Bianchi V (2010) Regulation by degradation, a cellular defense against deoxyribonucleotide pool imbalances. Mutat Res703, 210.
  • 69
    Mathews CK (2006) DNA precursor metabolism and genomic stability. FASEB J20, 13001314.
  • 70
    Zanella A, Bianchi P, Fermo E & Valentini G (2006) Hereditary pyrimidine 5′-nucleotidase deficiency: from genetics to clinical manifestations. Br J Haematol133, 113123.
  • 71
    Hunsucker SA, Spychala J & Mitchell BS (2001) Human cytosolic 5′-nucleotidase I: characterization and role in nucleoside analog resistance. J Biol Chem276, 1049810504.
  • 72
    Galmarini CM, Jordheim L & Dumontet C (2003) Role of IMP-selective 5′-nucleotidase (cN-II) in hematological malignancies. Leuk Lymphoma44, 11051111.
  • 73
    Grant S (1998) Ara-C: cellular and molecular pharmacology. Adv Cancer Res72, 197233.
  • 74
    Marinaki AM, Escuredo E, Duley JA, Simmonds HA, Amici A, Naponelli V, Magni G, Seip M, Ben-Bassat I, Harley EH et al. (2001) Genetic basis of hemolytic anemia caused by pyrimidine 5′ nucleotidase deficiency. Blood97, 33273332.
  • 75
    Mothet JP, Parent AT, Wolosker H, Brady RO Jr, Linden DJ, Ferris CD, Rogawski MA & Snyder SH (2000) d-serine is an endogenous ligand for the glycine site of the N-methyl-d-aspartate receptor. Proc Nat Acad Sci USA97, 49264931.
  • 76
    Tabatabaie L, Klomp LW, Berger R & de Koning TJ (2010) l-Serine synthesis in the central nervous system: a review on serine deficiency disorders. Mol Genet Metab99, 256262.
  • 77
    Jaeken J, Detheux M, Fryns JP, Collet JF, Alliet P & Van Schaftingen E (1997) Phosphoserine phosphatase deficiency in a patient with Williams syndrome. J Med Genet34, 594596.
  • 78
    Veiga-da-Cunha M, Collet JF, Prieur B, Jaeken J, Peeraer Y, Rabbijns A & Van Schaftingen E (2004) Mutations responsible for 3-phosphoserine phosphatase deficiency. Eur J Hum Genet12, 163166.
  • 79
    Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, Sethumadhavan S, Woo HK, Jang HG, Jha AK et al. (2011) Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature476, 346350.
  • 80
    Saxe JP, Wu H, Kelly TK, Phelps ME, Sun YE, Kornblum HI & Huang J (2007) A phenotypic small-molecule screen identifies an orphan ligand-receptor pair that regulates neural stem cell differentiation. Chem Biol14, 10191030.
  • 81
    Hawkinson JE, Acosta-Burruel M & Wood PL (1996) The metabotropic glutamate receptor antagonist L-2-amino-3-phosphonopropionic acid inhibits phosphoserine phosphatase. Eur J Pharmacol307, 219225.
  • 82
    Jemc J & Rebay I (2007) The eyes absent family of phosphotyrosine phosphatases: properties and roles in developmental regulation of transcription. Annu Rev Biochem76, 513538.
  • 83
    Jemc J & Rebay I (2007) Identification of transcriptional targets of the dual-function transcription factor/phosphatase eyes absent. Dev Biol310, 416429.
  • 84
    Krishnan N, Jeong DG, Jung SK, Ryu SE, Xiao A, Allis CD, Kim SJ & Tonks NK (2009) Dephosphorylation of the C-terminal tyrosyl residue of the DNA damage-related histone H2A.X is mediated by the protein phosphatase eyes absent. J Biol Chem284, 1606616070.
  • 85
    Cook PJ, Ju BG, Telese F, Wang X, Glass CK & Rosenfeld MG (2009) Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature458, 591596.
  • 86
    Okabe Y, Sano T & Nagata S (2009) Regulation of the innate immune response by threonine-phosphatase of Eyes absent. Nature460, 520524.
  • 87
    Schonberger J, Wang L, Shin JT, Kim SD, Depreux FF, Zhu H, Zon L, Pizard A, Kim JB, Macrae CA et al. (2005) Mutation in the transcriptional coactivator EYA4 causes dilated cardiomyopathy and sensorineural hearing loss. Nat Genet37, 418422.
  • 88
    Wayne S, Robertson NG, DeClau F, Chen N, Verhoeven K, Prasad S, Tranebjarg L, Morton CC, Ryan AF, Van Camp G et al. (2001) Mutations in the transcriptional activator EYA4 cause late-onset deafness at the DFNA10 locus. Hum Mol Genet10, 195200.
  • 89
    Miller SJ, Lan ZD, Hardiman A, Wu J, Kordich JJ, Patmore DM, Hegde RS, Cripe TP, Cancelas JA, Collins MH et al. (2010) Inhibition of Eyes Absent Homolog 4 expression induces malignant peripheral nerve sheath tumor necrosis. Oncogene29, 368379.
  • 90
    Zhang L, Yang N, Huang J, Buckanovich RJ, Liang S, Barchetti A, Vezzani C, O’Brien-Jenkins A, Wang J, Ward MR et al. (2005) Transcriptional coactivator Drosophila eyes absent homologue 2 is up-regulated in epithelial ovarian cancer and promotes tumor growth. Cancer Res65, 925932.
  • 91
    Pandey RN, Rani R, Yeo EJ, Spencer M, Hu S, Lang RA & Hegde RS (2010) The Eyes Absent phosphatase-transactivator proteins promote proliferation, transformation, migration, and invasion of tumor cells. Oncogene29, 37153722.
  • 92
    Reichenberger KJ, Coletta RD, Schulte AP, Varella-Garcia M & Ford HL (2005) Gene amplification is a mechanism of Six1 overexpression in breast cancer. Cancer Res65, 26682675.
  • 93
    Yu Y, Khan J, Khanna C, Helman L, Meltzer PS & Merlino G (2004) Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. Nat Med10, 175181.
  • 94
    Micalizzi DS, Christensen KL, Jedlicka P, Coletta RD, Baron AE, Harrell JC, Horwitz KB, Billheimer D, Heichman KA, Welm AL et al. (2009) The Six1 homeoprotein induces human mammary carcinoma cells to undergo epithelial-mesenchymal transition and metastasis in mice through increasing TGF-beta signaling. J Clin Invest119, 26782690.
  • 95
    McCoy EL, Iwanaga R, Jedlicka P, Abbey NS, Chodosh LA, Heichman KA, Welm AL & Ford HL (2009) Six1 expands the mouse mammary epithelial stem/progenitor cell pool and induces mammary tumors that undergo epithelial-mesenchymal transition. J Clin Invest119, 26632677.
  • 96
    Farabaugh SM, Micalizzi DS, Jedlicka P, Zhao R & Ford HL (2012) Eya2 is required to mediate the pro-metastatic functions of Six1 via the induction of TGF-beta signaling, epithelial-mesenchymal transition, and cancer stem cell properties. Oncogene31, 552562.
  • 97
    Grunewald S (2009) The clinical spectrum of phosphomannomutase 2 deficiency (CDG-Ia). Biochim Biophys Acta1792, 827834.
  • 98
    Veiga-da-Cunha M, Vleugels W, Maliekal P, Matthijs G & Van Schaftingen E (2008) Mammalian phosphomannomutase PMM1 is the brain IMP-sensitive glucose-1,6-bisphosphatase. J Biol Chem283, 3398833993.
  • 99
    Matthijs G, Schollen E, Pardon E, Veiga-Da-Cunha M, Jaeken J, Cassiman JJ & Van Schaftingen E (1997) Mutations in PMM2, a phosphomannomutase gene on chromosome 16p13, in carbohydrate-deficient glycoprotein type I syndrome (Jaeken syndrome). Nat Genet16, 8892.
  • 100
    Matthijs G, Schollen E, Heykants L & Grunewald S (1999) Phosphomannomutase deficiency: the molecular basis of the classical Jaeken syndrome (CDGS type Ia). Mol Genet Metab68, 220226.
  • 101
    Reue K (2009) The lipin family: mutations and metabolism. Curr Opin Lipidol20, 165170.
  • 102
    Zeharia A, Shaag A, Houtkooper RH, Hindi T, de Lonlay P, Erez G, Hubert L, Saada A, de Keyzer Y, Eshel G et al. (2008) Mutations in LPIN1 cause recurrent acute myoglobinuria in childhood. Am J Hum Genet83, 489494.
  • 103
    Wiedmann S, Fischer M, Koehler M, Neureuther K, Riegger G, Doering A, Schunkert H, Hengstenberg C & Baessler A (2008) Genetic variants within the LPIN1 gene, encoding lipin, are influencing phenotypes of the metabolic syndrome in humans. Diabetes57, 209217.
  • 104
    Loos RJ, Rankinen T, Perusse L, Tremblay A, Despres JP & Bouchard C (2007) Association of lipin 1 gene polymorphisms with measures of energy and glucose metabolism. Obesity (Silver Spring)15, 27232732.
  • 105
    Kang ES, Park SE, Han SJ, Kim SH, Nam CM, Ahn CW, Cha BS, Kim KS & Lee HC (2008) LPIN1 genetic variation is associated with rosiglitazone response in type 2 diabetic patients. Mol Genet Metab95, 96100.
  • 106
    Ong KL, Leung RY, Wong LY, Cherny SS, Sham PC, Lam TH, Lam KS & Cheung BM (2008) Association of a polymorphism in the lipin 1 gene with systolic blood pressure in men. Am J Hypertens21, 539545.
  • 107
    Fortpied J, Maliekal P, Vertommen D & Van Schaftingen E (2006) Magnesium-dependent phosphatase-1 is a protein-fructosamine-6-phosphatase potentially involved in glycation repair. J Biol Chem281, 1837818385.
  • 108
    Wu R, Garland M, Dunaway-Mariano D & Allen KN (2011) Homo sapiens dullard protein phosphatase shows a preference for the insulin-dependent phosphorylation site of lipin1. Biochemistry50, 30453047.
  • 109
    Satow R, Kurisaki A, Chan TC, Hamazaki TS & Asashima M (2006) Dullard promotes degradation and dephosphorylation of BMP receptors and is required for neural induction. Dev Cell11, 763774.
  • 110
    Roberts SJ, Stewart AJ, Schmid R, Blindauer CA, Bond SR, Sadler PJ & Farquharson C (2005) Probing the substrate specificities of human PHOSPHO1 and PHOSPHO2. Biochim Biophys Acta1752, 7382.
  • 111
    Preumont A, Rzem R, Vertommen D & Van Schaftingen E (2010) HDHD1, which is often deleted in X-linked ichthyosis, encodes a pseudouridine-5′-phosphatase. Biochem J431, 237244.
  • 112
    Maliekal P, Vertommen D, Delpierre G & Van Schaftingen E (2006) Identification of the sequence encoding N-acetylneuraminate-9-phosphate phosphatase. Glycobiology16, 165172.
  • 113
    Jang YM, Kim DW, Kang TC, Won MH, Baek NI, Moon BJ, Choi SY & Kwon OS (2003) Human pyridoxal phosphatase. Molecular cloning, functional expression, and tissue distribution. J Biol Chem278, 5004050046.
  • 114
    Li C, Liang YY, Feng XH, Tsai SY, Tsai MJ & O’Malley BW (2008) Essential phosphatases and a phospho-degron are critical for regulation of SRC-3/AIB1 coactivator function and turnover. Mol Cell31, 835849.
  • 115
    Neff CD, Abkevich V, Packer JC, Chen Y, Potter J, Riley R, Davenport C, DeGrado Warren J, Jammulapati S, Bhathena A et al. (2009) Evidence for HTR1A and LHPP as interacting genetic risk factors in major depression. Mol Psychiatry14, 621630.