• 1
    Medes G, Thomas A & Weinhouse S (1953) Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro. Cancer Res 13, 2729.
  • 2
    Kuhajda FP, Jenner K, Wood FD, Hennigar RA, Jacobs LB, Dick JD & Pasternack GR (1994) Fatty acid synthesis: a potential selective target for antineoplastic therapy. Proc Natl Acad Sci USA 91, 63796383.
  • 3
    Menendez JA & Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7, 763777.
  • 4
    Li JN, Mahmoud MA, Han WF, Ripple M & Pizer ES (2000) Sterol regulatory element-binding protein-1 participates in the regulation of fatty acid synthase expression in colorectal neoplasia. Exp Cell Res 261, 159165.
  • 5
    Swinnen JV, Vanderhoydonc F, Elgamal AA, Eelen M, Vercaeren I, Joniau S, Van Poppel H, Baert L, Goossens K, Heyns W et al. (2000) Selective activation of the fatty acid synthesis pathway in human prostate cancer. Int J Cancer 88, 176179.
  • 6
    Yoon S, Lee M-Y, Park SW, Moon J-S, Koh Y-K, Ahn Y-H, Park B-W & Kim K-S (2007) Up-regulation of acetyl-CoA carboxylase and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells. J Biol Chem 282, 2612226131.
  • 7
    Bauer DE, Hatzivassiliou G, Zhao F, Andreadis C & Thompson CB (2005) ATP citrate lyase is an important component of cell growth and transformation. Oncogene 24, 63146322.
  • 8
    Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D, Hingorani SR, Tuveson DA & Thompson CB (2005) ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8, 311321.
  • 9
    Beckers A, Organe S, Timmermans L, Scheys K, Peeters A, Brusselmans K, Verhoeven G & Swinnen JV (2007) Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. Cancer Res 67, 81808187.
  • 10
    Tamura K, Makino A, Hullin-Matsuda F, Kobayashi T, Furihata M, Chung S, Ashida S, Miki T, Fujioka T, Shuin T et al. (2009) Novel lipogenic enzyme ELOVL7 is involved in prostate cancer growth through saturated long-chain fatty acid metabolism. Cancer Res 69, 81338140.
  • 11
    Kamphorst JJ, Fan J, Lu W, White E & Rabinowitz JD (2011) Liquid chromatography–high resolution mass spectrometry analysis of fatty acid metabolism. Anal Chem 83, 91149122.
  • 12
    Quijano C, Cao L, Fergusson MM, Romero H, Liu J, Gutkind S, Rovira II, Mohney RP, Karoly ED & Finkel T (2012) Oncogene-induced senescence results in marked metabolic and bioenergetic alterations. Cell Cycle 11, 13831392.
  • 13
    Chang TY, Chang CC, Ohgami N & Yamauchi Y (2006) Cholesterol sensing, trafficking, and esterification. Annu Rev Cell Dev Biol 25, 129157.
  • 14
    Lingwood D & Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327, 4650.
  • 15
    Konstantinopoulos PA, Karamouzis MV & Papavassiliou AG (2007) Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nat Rev Drug Discov 6, 541555.
  • 16
    Hager MH, Solomon KR & Freeman MR (2006) The role of cholesterol in prostate cancer. Curr Opin Clin Nutr Metab Care 9, 379385.
  • 17
    Clendening JW, Pandyra A, Boutros PC, El Ghamrasni S, Khosravi F, Trentin GA, Martirosyan A, Hakem A, Hakem R, Jurisica I et al. (2010) Dysregulation of the mevalonate pathway promotes transformation. Proc Natl Acad Sci USA 107, 1505115056.
  • 18
    Rao S, Lowe M, Herliczek TW & Keyomarsi K (1998) Lovastatin mediated G1 arrest in normal and tumor breast cells is through inhibition of CDK2 activity and redistribution of p21 and p27, independent of p53. Oncogene 17, 23932402.
  • 19
    Gray-Bablin J, Rao S & Keyomarsi K (1997) Lovastatin induction of cyclin-dependent kinase inhibitors in human breast cells occurs in a cell cycle-independent fashion. Cancer Res 57, 604609.
  • 20
    Newman A, Clutterbuck RD, Powles RL, Catovsky D & Millar JL (1997) A comparison of the effect of the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors simvastatin, lovastatin and pravastatin on leukaemic and normal bone marrow progenitors. Leuk Lymphoma 24, 533537.
  • 21
    Kodach LL, Jacobs RJ, Voorneveld PW, Wildenberg ME, Verspaget HW, van Wezel T, Morreau H, Hommes DW, Peppelenbosch MP, van den Brink GR et al. (2011) Statins augment the chemosensitivity of colorectal cancer cells inducing epigenetic reprogramming and reducing colorectal cancer cell ‘stemness’ via the bone morphogenetic protein pathway. Gut 60, 15441553.
  • 22
    Kornblau SM, Banker DE, Stirewalt D, Shen D, Lemker E, Verstovsek S, Estrov Z, Faderl S, Cortes J, Beran M et al. (2007) Blockade of adaptive defensive changes in cholesterol uptake and synthesis in AML by the addition of pravastatin to idarubicin + high-dose Ara-C: a phase 1 study. Blood 109, 29993006.
  • 23
    Graf H, Jungst C, Straub G, Dogan S, Hoffmann RT, Jakobs T, Reiser M, Waggershauser T, Helmberger T, Walter A et al. (2008) Chemoembolization combined with pravastatin improves survival in patients with hepatocellular carcinoma. Digestion 78, 3438.
  • 24
    Bonovas S, Filioussi K, Flordellis CS & Sitaras NM (2007) Statins and the risk of colorectal cancer: a meta-analysis of 18 studies involving more than 1.5 million patients. J Clin Oncol 25, 34623468.
  • 25
    Dale KM, Coleman CI, Henyan NN, Kluger J & White CM (2006) Statins and cancer risk: a meta-analysis. JAMA 295, 7480.
  • 26
    Bardou M, Barkun A & Martel M (2010) Effect of statin therapy on colorectal cancer. Gut 59, 15721585.
  • 27
    El-Serag HB, Johnson ML, Hachem C & Morgana RO (2009) Statins are associated with a reduced risk of hepatocellular carcinoma in a large cohort of patients with diabetes. Gastroenterology 136, 16011608.
  • 28
    Ahern TP, Pedersen L, Tarp M, Cronin-Fenton DP, Garne JP, Silliman RA, Sorensen HT & Lash TL (2011) Statin prescriptions and breast cancer recurrence risk: a Danish nationwide prospective cohort study. J Natl Cancer Inst 103, 14611468.
  • 29
    Farese RV Jr & Walther TC (2009) Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 139, 855860.
  • 30
    Accioly MT, Pacheco P, Maya-Monteiro CM, Carrossini N, Robbs BK, Oliveira SS, Kaufmann C, Morgado-Diaz JA, Bozza PT & Viola JP (2008) Lipid bodies are reservoirs of cyclooxygenase-2 and sites of prostaglandin-E2 synthesis in colon cancer cells. Cancer Res 68, 17321740.
  • 31
    Locke GA, Cheng D, Witmer MR, Tamura JK, Haque T, Carney RF, Rendina AR & Marcinkeviciene J (2008) Differential activation of recombinant human acetyl-CoA carboxylases 1 and 2 by citrate. Arch Biochem Biophys 475, 7279.
  • 32
    Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8, 774785.
  • 33
    Hardie DG & Carling D (1997) The AMP-activated protein kinase--fuel gauge of the mammalian cell? Eur J Biochem/FEBS 246, 259273.
  • 34
    Liu Y (2006) Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic Dis 9, 230234.
  • 35
    Khasawneh J, Schulz MD, Walch A, Rozman J, Hrabe de Angelis M, Klingenspor M, Buck A, Schwaiger M, Saur D, Schmid RM et al. (2009) Inflammation and mitochondrial fatty acid beta-oxidation link obesity to early tumor promotion. Proc Natl Acad Sci USA 106, 33543359.
  • 36
    Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, Korchin B, Kaluarachchi K, Bornmann W, Duvvuri S, Taegtmeyer H et al. (2010) Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest 120, 142156.
  • 37
    Pike LS, Smift AL, Croteau NJ, Ferrick DA & Wu M (2010) Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochim Biophys Acta 1807, 726734.
  • 38
    Buzzai M, Bauer DE, Jones RG, Deberardinis RJ, Hatzivassiliou G, Elstrom RL & Thompson CB (2005) The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene 24, 41654173.
  • 39
    Horton JD (2002) Sterol regulatory element-binding proteins: transcriptional activators of lipid synthesis. Biochem Soc Trans 30, 10911095.
  • 40
    Eberle D, Hegarty B, Bossard P, Ferre P & Foufelle F (2004) SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 86, 839848.
  • 41
    Brown MS & Goldstein JL (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331340.
  • 42
    Shimomura I, Shimano H, Horton JD, Goldstein JL & Brown MS (1997) Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. J Clin Invest 99, 838845.
  • 43
    Bengoechea-Alonso MT & Ericsson J (2007) SREBP in signal transduction: cholesterol metabolism and beyond. Curr Opin Cell Biol 19, 215222.
  • 44
    Espenshade PJ, Li WP & Yabe D (2002) Sterols block binding of COPII proteins to SCAP, thereby controlling SCAP sorting in ER. Proc Natl Acad Sci USA 99, 1169411699.
  • 45
    Rawson RB (2003) The SREBP pathway – insights from Insigs and insects. Nat Rev Mol Cell Biol 4, 631640.
  • 46
    Dobrosotskaya IY, Seegmiller AC, Brown MS, Goldstein JL & Rawson RB (2002) Regulation of SREBP processing and membrane lipid production by phospholipids in Drosophila. Science 296, 879883.
  • 47
    Walker AK, Jacobs RL, Watts JL, Rottiers V, Jiang K, Finnegan DM, Shioda T, Hansen M, Yang F, Niebergall LJ et al. (2011) A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell 147, 840852.
  • 48
    Oliner JD, Andresen JM, Hansen SK, Zhou S & Tjian R (1996) SREBP transcriptional activity is mediated through an interaction with the CREB-binding protein. Genes Dev 10, 29032911.
  • 49
    Yang F, Vought BW, Satterlee JS, Walker AK, Jim Sun ZY, Watts JL, Debeaumont R, Mako Saito R, Hyberts SG, Yang S et al. (2006) An ARC/Mediator subunit required for SREBP control of cholesterol and lipid homeostasis. Nature 442, 700704.
  • 50
    Sundqvist A, Bengoechea-Alonso MT, Ye X, Lukiyanchuk V, Jin J, Harper JW & Ericsson J (2005) Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF(Fbw7). Cell Metab 1, 379391.
  • 51
    Bengoechea-Alonso MT & Ericsson J (2009) A phosphorylation cascade controls the degradation of active SREBP1. J Biol Chem 284, 58855895.
  • 52
    Cully M, You H, Levine AJ & Mak TW (2006) Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6, 184192.
  • 53
    Stansbie D, Brownsey RW, Crettaz M & Denton RM (1976) Acute effects in vivo of anti-insulin serum on rates of fatty acid synthesis and activities of acetyl-coenzyme A carboxylase and pyruvate dehydrogenase in liver and epididymal adipose tissue of fed rats. Biochem J 160, 413416.
  • 54
    Berwick DC, Hers I, Heesom KJ, Moule SK & Tavare JM (2002) The identification of ATP-citrate lyase as a protein kinase B (Akt) substrate in primary adipocytes. J Biol Chem 277, 3389533900.
  • 55
    Porstmann T, Griffiths B, Chung YL, Delpuech O, Griffiths JR, Downward J & Schulze A (2005) PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene 24, 64656481.
  • 56
    Zoncu R, Efeyan A & Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12, 2135.
  • 57
    Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, Leevers S, Griffiths JR, Chung YL & Schulze A (2008) SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab 8, 224236.
  • 58
    Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S et al. (2010) Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 39, 171183.
  • 59
    Li S, Brown MS & Goldstein JL (2010) Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proc Natl Acad Sci USA 107, 34413446.
  • 60
    Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, Park O, Luo Z, Lefai E, Shyy JY et al. (2011) AMPK Phosphorylates and Inhibits SREBP Activity to Attenuate Hepatic Steatosis and Atherosclerosis in Diet-Induced Insulin-Resistant Mice. Cell Metab 13, 376388.
  • 61
    Shamma A, Takegami Y, Miki T, Kitajima S, Noda M, Obara T, Okamoto T & Takahashi C (2009) Rb regulates DNA damage response and cellular senescence through E2F-dependent suppression of N-ras isoprenylation. Cancer Cell 15, 255269.
  • 62
    Freed-Pastor William A, Mizuno H, Zhao X, Langerød A, Moon S-H, Rodriguez-Barrueco R, Barsotti A, Chicas A, Li W, Polotskaia A et al. (2012) Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 148, 244258.
  • 63
    Guo D, Prins RM, Dang J, Kuga D, Iwanami A, Soto H, Lin KY, Huang TT, Akhavan D, Hock MB et al. (2009) EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy. Science Signal 2, ra82ra82. doi:10.1126/scisignal.2000446.
  • 64
    Guo D, Reinitz F, Youssef M, Hong C, Nathanson D, Akhavan D, Kuga D, Amzajerdi AN, Soto H, Zhu S et al. (2011) An LXR agonist promotes GBM cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR-dependent pathway. Cancer Discov 1, 442456.
  • 65
    Kaelin WG Jr & Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30, 393402.
  • 66
    Linehan WM, Srinivasan R & Schmidt LS (2010) The genetic basis of kidney cancer: a metabolic disease. Nat Rev Urol 7, 277285.
  • 67
    Laughner E, Taghavi P, Chiles K, Mahon PC & Semenza GL (2001) HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol 21, 39954004.
  • 68
    Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q, Dillehay LE, Madan A, Semenza GL & Bedi A (2000) Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev 14, 3444.
  • 69
    Pollard PJ, Spencer-Dene B, Shukla D, Howarth K, Nye E, El-Bahrawy M, Deheragoda M, Joannou M, McDonald S, Martin A et al. (2007) Targeted inactivation of fh1 causes proliferative renal cyst development and activation of the hypoxia pathway. Cancer Cell 11, 311319.
  • 70
    Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, Pan Y, Simon MC, Thompson CB & Gottlieb E (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7, 7785.
  • 71
    Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD & Semenza GL (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16, 46044613.
  • 72
    Ebert BL, Firth JD & Ratcliffe PJ (1995) Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 via distinct Cis-acting sequences. J Biol Chem 270, 2908329089.
  • 73
    Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8, 705713.
  • 74
    Kim JW, Tchernyshyov I, Semenza GL & Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3, 177185.
  • 75
    Furuta E, Pai SK, Zhan R, Bandyopadhyay S, Watabe M, Mo YY, Hirota S, Hosobe S, Tsukada T, Miura K et al. (2008) Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Res 68, 10031011.
  • 76
    Yoshii Y, Furukawa T, Yoshii H, Mori T, Kiyono Y, Waki A, Kobayashi M, Tsujikawa T, Kudo T, Okazawa H et al. (2009) Cytosolic acetyl-CoA synthetase affected tumor cell survival under hypoxia: the possible function in tumor acetyl-CoA/acetate metabolism. Cancer Sci 100, 821827.
  • 77
    Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T, Yang Y, Linehan WM, Chandel NS & Deberardinis RJ (2011) Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481, 385388.
  • 78
    Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, Jewell CM, Johnson ZR, Irvine DJ, Guarente L et al. (2011) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380384.
  • 79
    Wise DR, Ward PS, Shay JE, Cross JR, Gruber JJ, Sachdeva UM, Platt JM, Dematteo RG, Simon MC & Thompson CB (2011) Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci USA 108, 1961119616.
  • 80
    Whitmer JT, Idell-Wenger JA, Rovetto MJ & Neely JR (1978) Control of fatty acid metabolism in ischemic and hypoxic hearts. J Biol Chem 253, 43054309.
  • 81
    Bostrom P, Magnusson B, Svensson PA, Wiklund O, Boren J, Carlsson LM, Stahlman M, Olofsson SO & Hulten LM (2006) Hypoxia converts human macrophages into triglyceride-loaded foam cells. Arterioscler Thromb Vasc Biol 26, 18711876.
  • 82
    Gimm T, Wiese M, Teschemacher B, Deggerich A, Schodel J, Knaup KX, Hackenbeck T, Hellerbrand C, Amann K, Wiesener MS et al. (2010) Hypoxia-inducible protein 2 is a novel lipid droplet protein and a specific target gene of hypoxia-inducible factor-1. FASEB J 24, 44434458.
  • 83
    Krishnan J, Suter M, Windak R, Krebs T, Felley A, Montessuit C, Tokarska-Schlattner M, Aasum E, Bogdanova A, Perriard E et al. (2009) Activation of a HIF1alpha-PPARgamma axis underlies the integration of glycolytic and lipid anabolic pathways in pathologic cardiac hypertrophy. Cell Metab 9, 512524.
  • 84
    Rankin EB, Rha J, Selak MA, Unger TL, Keith B, Liu Q & Haase VH (2009) Hypoxia-Inducible Factor 2 Regulates Hepatic Lipid Metabolism. Mol Cell Biol 29, 45274538.
  • 85
    Rezende RB, Drachenberg CB, Kumar D, Blanchaert R, Ord RA, Ioffe OB & Papadimitriou JC (1999) Differential diagnosis between monomorphic clear cell adenocarcinoma of salivary glands and renal (clear) cell carcinoma. Am J Surg Pathol 23, 15321538.
  • 86
    Calle EE & Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4, 579591.
  • 87
    Samuel Varman T & Shulman Gerald I (2012) Mechanisms for insulin resistance: common threads and missing links. Cell 148, 852871.
  • 88
    Renehan AG, Frystyk J & Flyvbjerg A (2006) Obesity and cancer risk: the role of the insulin-IGF axis. Trends Endocrinol Metab 17, 328336.
  • 89
    Rosenzweig SA & Atreya HS (2010) Defining the pathway to insulin-like growth factor system targeting in cancer. Biochem Pharmacol 80, 11151124.
  • 90
    Shoelson SE, Lee J & Goldfine AB (2006) Inflammation and insulin resistance. J Clin Invest 116, 17931801.
  • 91
    Park EJ, Lee JH, Yu GY, He G, Ali SR, Holzer RG, Osterreicher CH, Takahashi H & Karin M (2010) Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140, 197208.
  • 92
    Kalaany NY & Sabatini DM (2009) Tumours with PI3K activation are resistant to dietary restriction. Nature 458, 725731.
  • 93
    Sell C (2003) Caloric restriction and insulin-like growth factors in aging and cancer. Horm Metab Res 35, 705711.
  • 94
    Evans WJ, Morley JE, Argiles J, Bales C, Baracos V, Guttridge D, Jatoi A, Kalantar-Zadeh K, Lochs H, Mantovani G et al. (2008) Cachexia: a new definition. Clin Nutr 27, 793799.
  • 95
    Esper DH & Harb WA (2005) The cancer cachexia syndrome: a review of metabolic and clinical manifestations. Nutr Clin Pract 20, 369376.
  • 96
    Ryden M, Agustsson T, Laurencikiene J, Britton T, Sjolin E, Isaksson B, Permert J & Arner P (2008) Lipolysis – not inflammation, cell death, or lipogenesis – is involved in adipose tissue loss in cancer cachexia. Cancer 113, 16951704.
  • 97
    Dahlman I, Mejhert N, Linder K, Agustsson T, Mutch DM, Kulyte A, Isaksson B, Permert J, Petrovic N, Nedergaard J et al. (2010) Adipose tissue pathways involved in weight loss of cancer cachexia. Br J Cancer 102, 15411548.
  • 98
    Agustsson T, Ryden M, Hoffstedt J, van Harmelen V, Dicker A, Laurencikiene J, Isaksson B, Permert J & -Arner P (2007) Mechanism of Increased Lipolysis in Cancer Cachexia. Cancer Res 67, 55315537.
  • 99
    Laurencikiene J, Stenson BM, Arvidsson Nordstrom E, Agustsson T, Langin D, Isaksson B, Permert J, Ryden M & Arner P (2008) Evidence for an important role of CIDEA in human cancer cachexia. Cancer Res 68, 92479254.
  • 100
    Shaw JH & Wolfe RR (1987) Fatty acid and glycerol kinetics in septic patients and in patients with gastrointestinal cancer. The response to glucose infusion and parenteral feeding. Ann Surg 205, 368376.
  • 101
    Gercel-Taylor C, Doering DL, Kraemer FB & Taylor DD (1996) Aberrations in normal systemic lipid metabolism in ovarian cancer patients. Gynecol Oncol 60, 3541.
  • 102
    Argiles JM, Alvarez B & Lopez-Soriano FJ (1997) The metabolic basis of cancer cachexia. Med Res Rev 17, 477498.
  • 103
    Bengoechea-Alonso MT & Ericsson J (2006) Cdk1/cyclin B-mediated phosphorylation stabilizes SREBP1 during mitosis. Cell Cycle 5, 17081718.
  • 104
    Scaglia N, Caviglia JM & Igal RA (2005) High stearoyl-CoA desaturase protein and activity levels in simian virus 40 transformed-human lung fibroblasts. Biochim Biophys Acta 1687, 141151.
  • 105
    Li J, Ding SF, Habib NA, Fermor BF, Wood CB & Gilmour RS (1994) Partial characterization of a cDNA for human stearoyl-CoA desaturase and changes in its mRNA expression in some normal and malignant tissues. Int J Cancer 57, 348352.
  • 106
    Fritz V, Benfodda Z, Rodier G, Henriquet C, Iborra F, Avances C, Allory Y, de la Taille A, Culine S, Blancou H et al. (2010) Abrogation of de novo lipogenesis by stearoyl-CoA desaturase 1 inhibition interferes with oncogenic signaling and blocks prostate cancer progression in mice. Mol Cancer Ther 9, 17401754.
  • 107
    Falvella FS, Pascale RM, Gariboldi M, Manenti G, De Miglio MR, Simile MM, Dragani TA & Feo F (2002) Stearoyl-CoA desaturase 1 (Scd1) gene overexpression is associated with genetic predisposition to hepatocarcinogenesis in mice and rats. Carcinogenesis 23, 19331936.
  • 108
    Scaglia N & Igal RA (2005) Stearoyl-CoA desaturase is involved in the control of proliferation, anchorage-independent growth, and survival in human transformed cells. J Biol Chem 280, 2533925349.
  • 109
    Scaglia N, Chisholm JW & Igal RA (2009) Inhibition of StearoylCoA desaturase-1 inactivates acetyl-CoA carboxylase and impairs proliferation in cancer cells: role of AMPK. PLoS One 4, e6812, doi:10.1371/journal.pone.0006812.
  • 110
    Dobrzyn P, Dobrzyn A, Miyazaki M, Cohen P, Asilmaz E, Hardie DG, Friedman JM & Ntambi JM (2004) Stearoyl-CoA desaturase 1 deficiency increases fatty acid oxidation by activating AMP-activated protein kinase in liver. Proc Natl Acad Sci USA 101, 64096414.
  • 111
    Hess D, Chisholm JW & Igal RA (2010) Inhibition of StearoylCoA desaturase activity blocks cell cycle progression and induces programmed cell death in lung cancer cells. PLoS One 5, e11394, doi:10.1371/journal.pone.0011394.
  • 112
    Ramirez de Molina A, Gutierrez R, Ramos MA, Silva JM, Silva J, Bonilla F, Sanchez JJ & Lacal JC (2002) Increased choline kinase activity in human breast carcinomas: clinical evidence for a potential novel antitumor strategy. Oncogene 21, 43174322.
  • 113
    Ramirez de Molina A, Rodriguez-Gonzalez A, Gutierrez R, Martinez-Pineiro L, Sanchez J, Bonilla F, Rosell R & Lacal J (2002) Overexpression of choline kinase is a frequent feature in human tumor-derived cell lines and in lung, prostate, and colorectal human cancers. Biochem Biophys Res Commun 296, 580583.
  • 114
    Iorio E, Ricci A, Bagnoli M, Pisanu ME, Castellano G, Di Vito M, Venturini E, Glunde K, Bhujwalla ZM, Mezzanzanica D et al. (2010) Activation of phosphatidylcholine cycle enzymes in human epithelial ovarian cancer cells. Cancer Res 70, 21262135.
  • 115
    Ramirez de Molina A, Gallego-Ortega D, Sarmentero J, Banez-Coronel M, Martin-Cantalejo Y & Lacal JC (2005) Choline kinase is a novel oncogene that potentiates RhoA-induced carcinogenesis. Cancer Res 65, 56475653.
  • 116
    Gallego-Ortega D, Ramirez de Molina A, Ramos MA, Valdes-Mora F, Barderas MG, Sarmentero-Estrada J & Lacal JC (2009) Differential role of human choline kinase alpha and beta enzymes in lipid metabolism: implications in cancer onset and treatment. PLoS One 4, e7819, doi:10.1371/journal.pone.0007819.
  • 117
    Kroemer G & Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13, 472482.
  • 118
    Parks SK, Chiche J & Pouyssegur J (2010) pH control mechanisms of tumor survival and growth. J Cell Physiol 226, 299308.
  • 119
    Hochachka PW (1980) Living Without Oxygen. Harvard University Press, Cambridge, USA.
  • 120
    Hochachka PW, Rupert JL, Goldenberg L, Gleave M & Kozlowski P (2002) Going malignant: the hypoxia-cancer connection in the prostate. BioEssays 24, 749757.
  • 121
    Ward PS & Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21, 297308.
  • 122
    Rydstrom J (2006) Mitochondrial NADPH, transhydrogenase and disease. Biochim Biophys Acta 1757, 721726.
  • 123
    Rysman E, Brusselmans K, Scheys K, Timmermans L, Derua R, Munck S, Van Veldhoven PP, Waltregny D, Daniels VW, Machiels J et al. (2010) De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res 70, 81178126.
  • 124
    Vander Heiden MG, Cantley LC & Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 10291033.
  • 125
    Price DT, Coleman RE, Liao RP, Robertson CN, Polascik TJ & DeGrado TR (2002) Comparison of [18 F]fluorocholine and [18 F]fluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer. J Urol 168, 273280.
  • 126
    Effert PJ, Bares R, Handt S, Wolff JM, Bull U & Jakse G (1996) Metabolic imaging of untreated prostate cancer by positron emission tomography with 18fluorine-labeled deoxyglucose. J Urol 155, 994998.
  • 127
    Liu Y, Zuckier LS & Ghesani NV (2010) Dominant uptake of fatty acid over glucose by prostate cells: a potential new diagnostic and therapeutic approach. Anticancer Res 30, 369374.
  • 128
    Zha S, Ferdinandusse S, Hicks JL, Denis S, Dunn TA, Wanders RJ, Luo J, De Marzo AM & Isaacs WB (2005) Peroxisomal branched chain fatty acid beta-oxidation pathway is upregulated in prostate cancer. Prostate 63, 316323.
  • 129
    Costello LC & Franklin RB (2006) The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots. Mol Cancer 5, 17.
  • 130
    Deberardinis RJ, Lum JJ & Thompson CB (2006) Phosphatidylinositol 3-kinase-dependent modulation of carnitine palmitoyltransferase 1A expression regulates lipid metabolism during hematopoietic cell growth. J Biol Chem 281, 3737237380.
  • 131
    Simons K & Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1, 3139.
  • 132
    Sebti SM (2005) Protein farnesylation: implications for normal physiology, malignant transformation, and cancer therapy. Cancer Cell 7, 297300.
  • 133
    Gupta GP, Nguyen DX, Chiang AC, Bos PD, Kim JY, Nadal C, Gomis RR, Manova-Todorova K & Massague J (2007) Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446, 765770.
  • 134
    Mills GB & Moolenaar WH (2003) The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer 3, 582591.
  • 135
    Nomura DK, Long JZ, Niessen S, Hoover HS, Ng SW & Cravatt BF (2010) Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 140, 4961.