SEARCH

SEARCH BY CITATION

References

  • 1
    Tonks NK, Diltz CD & Fischer EH (1988) Purification of the major protein-tyrosine-phosphatases of human placenta. J Biol Chem263, 67226730.
  • 2
    Andersen JN, Mortensen OH, Peters GH, Drake PG, Iversen LF, Olsen OH, Jansen PG, Andersen HS, Tonks NK & Møller NPH (2001) Sructural and evolutionary relationships among protein tyrosine phosphatase domains. Mol Cell Biol21, 71177136.
  • 3
    Johnson KG & Van Vactor D (2003) Receptor protein tyrosine phosphatases in nervous system development. Physiol Rev83, 124.
  • 4
    Bilwes AM, den Hertog J, Hunter T & Noel JP (1996) Structural basis for inhibition of receptor protein-tyrosine phosphatase-[alpha] by dimerization. Nature382, 555559.
  • 5
    Desai DM, Sap J, Schlessinger J & Weiss A (1993) Ligand-mediated negative regulation of a chimeric transmembrane receptor tyrosine phosphatase. Cell73, 541554.
  • 6
    Hoffmann KMV, Tonks NK & Barford D (1997) The crystal structure of domain 1 of receptor protein-tyrosine phosphatase μ. J Biol Chem272, 2750527508.
  • 7
    Nam H-J, Poy F, Krueger NX, Saito H & Frederick CA (1999) Crystal structure of the tandem phosphatase domains of RPTP LAR. Cell97, 449457.
  • 8
    Nam H-J, Poy F, Saito H & Frederick CA (2005) Structural basis for the function and regulation of the receptor protein tyrosine phosphatase CD45. J Exp Med201, 441452.
  • 9
    Barr AJ, Ugochukwu E, Lee WH, King ON, Filippakopoulos P, Alfano I, Savitsky P, Burgess-Brown NA, Muller S & Knapp S (2009) Large-scale structural analysis of the classical human protein tyrosine phosphatome. Cell136, 352363.
  • 10
    Tonks NK (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol7, 833846.
  • 11
    Meng K, Rodriguez-Pena A, Dimitrov T, Chen W, Yamin M, Noda M & Deuel TF (2000) Pleiotrophin signals increased tyrosine phosphorylation of beta beta-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase beta/zeta. Proc Natl Acad Sci USA97, 26032608.
  • 12
    Fukada M, Fujikawa A, Chow JP, Ikematsu S, Sakuma S & Noda M (2006) Protein tyrosine phosphatase receptor type Z is inactivated by ligand-induced oligomerization. FEBS Lett580, 40514056.
  • 13
    Perez-Pinera P, Alcantara S, Dimitrov T, Vega JA & Deuel TF (2006) Pleiotrophin disrupts calcium-dependent homophilic cell–cell adhesion and initiates an epithelial–mesenchymal transition. Proc Natl Acad Sci USA103, 1779517800.
  • 14
    Muller S, Kunkel P, Lamszus K, Ulbricht U, Lorente GA, Nelson AM, von Schack D, Chin DJ, Lohr SC, Westphal M et al. (2003) Arole for receptor tyrosine phosphatase zeta in glioma cell migration. Oncogene22, 66616668.
  • 15
    Mikelis C, Sfaelou E, Koutsioumpa M, Kieffer N & Papdimitriou E (2009) Integrin αvβ3 is a pleiotrophin receptor required for pleiotrophin-induced endothelial cell migration through receptor protein tyrosine phosphatase β/ζ. FASEB J23, 14591469.
  • 16
    Hodivala-Dilke K, Reynolds A & Reynolds L (2003) Integrins in angiogenesis: multitalented molecules in a balancing act. Cell Tissue Res314, 131144.
  • 17
    Polytarchou C, Hatziapostolou M, Poimenidi E, Mikelis C, Papadopoulou A, Parthymou A & Papadimitriou E (2009) Nitric oxide stimulates migration of human endothelial and prostate cancer cells through up-regulation of pleiotrophin expression and its receptor protein tyrosine phosphatase β/ζ. Int J Cancer124, 17851793.
  • 18
    Diamantopoulou Z, Courty J & Katsoris P (2011) Pleiotrophin biological activity results from the opposing effects of PTPRZ1 and ALK. In Europhosphatases 2011, Protein Phosphatases: From Molecules to Networks. Abstract P18. Baden, Austria.
  • 19
    Sakurai T, Lustig M, Nativ M, Hemperly JJ, Schlessinger J, Peles E & Grumet M (1997) Induction of neurite outgrowth through contactin and Nr-CAM by extracellular regions of glial receptor tyrosine phosphatase beta. J Cell Biol136, 907918.
  • 20
    Hashemi H, Hurley M, Gibson A, Panova V, Tchetchelnitski V, Barr A & Stoker AW (2011) Receptor tyrosine phosphatase PTPgamma is a regulator of spinal cord neurogenesis. Mol Cell Neurosci46, 469482.
  • 21
    Bouyain S & Watkins DJ (2010) The protein tyrosine phosphatases PTPRZ and PTPRG bind to distinct members of the contactin family of neural recognition molecules. Proc Natl Acad Sci USA107, 24432448.
  • 22
    Barnea G, Silvennoinen O, Shaanan B, Honegger AM, Canoll PD, D’Eustachio P, Morse B, Levy JB, Laforgia S, Huebner K et al. (1993) Identification of a carbonic anhydrase-like domain in the extracellular region of RPTP gamma defines a new subfamily of receptor tyrosine phosphatases. Mol Cell Biol13, 14971506.
  • 23
    Krueger NX & Saito H (1992) Ahuman transmembrane protein-tyrosine-phosphatase, PTP zeta, is expressed in brain and has an N-terminal receptor domain homologous to carbonic anhydrases. Proc Natl Acad Sci USA89, 74177421.
  • 24
    Peles E, Nativ M, Campbell PL, Sakurai T, Martinez R, Lev S, Clary DO, Schilling J, Barnea G, Plowman GD et al. (1995) The carbonic anhydrase domain of receptor tyrosine phosphatase beta is a functional ligand for the axonal cell recognition molecule contactin. Cell82, 251260.
  • 25
    Zuko A, Bouyain S, van der Zwaag B & Burbach JP (2011) Contactins: structural aspects in relation to developmental functions in brain disease. Adv Protein Chem Struct Biol84, 143180.
  • 26
    Lamprianou S, Chatzopoulou E, Thomas JL, Bouyain S & Harroch S (2011) A complex between contactin-1 and the protein tyrosine phosphatase PTPRZ controls the development of oligodendrocyte precursor cells. Proc Natl Acad Sci USA108, 1749817503.
  • 27
    Peles E, Schlessinger J & Grumet M (1998) Multi-ligand interactions with receptor-like protein tyrosine phosphatase β: implications for intercellular signaling. Trend Biochem Sci23, 121124.
  • 28
    Czopka T, von Holst A, ffrench-Constant C & Faissner A (2010) Regulatory mechanisms that mediate tenascin C-dependent inhibition of oligodendrocyte precursor differentiation. J Neurosci30, 1231012322.
  • 29
    Czopka T, Von Holst A, Schmidt G, ffrench-Constant C & Faissner A (2009) Tenascin C and tenascin R similarly prevent the formation of myelin membranes in a RhoA-dependent manner, but antagonistically regulate the expression of myelin basic protein via a separate pathway. Glia57, 17901801.
  • 30
    Desai CJ, Popova E & Zinn K (1994) A Drosophila receptor tyrosine phosphatase expressed in the embryonic CNS and larval optic lobes is a member of the set of proteins bearing the ‘HRP’ carbohydrate epitope. J Neurosci14, 72727283.
  • 31
    Johnson KG, Tenney AP, Ghose A, Duckworth AM, Higashi ME, Parfitt K, Marcu O, Heslip TR, Marsh JL, Schwarz TL et al. (2006) The HSPGs syndecan and dallylike bind the receptor phosphatase LAR and exert distinct effects on synaptic development. Neuron49, 517531.
  • 32
    Elchebly M, Wagner J, Kennedy TE, Lanctot C, Michaliszyn E, Itie A, Drouin J & Tremblay ML (1999) Neuroendocrine dysplasia in mice lacking protein tyrosine phosphatase sigma. Nat Genet21, 330333.
  • 33
    Kolkman MJ, Streijger F, Linkels M, Bloemen M, Heeren DJ, Hendriks WJ & Van der Zee CE (2004) Mice lacking leukocyte common antigen-related (LAR) protein tyrosine phosphatase domains demonstrate spatial learning impairment in the two-trial water maze and hyperactivity in multiple behavioural tests. Behav Brain Res154, 171182.
  • 34
    Uetani N, Chagnon MJ, Kennedy TE, Iwakura Y & Tremblay ML (2006) Mammalian motoneuron axon targeting requires receptor protein tyrosine phosphatases sigma and delta. J Neurosci26, 58725880.
  • 35
    Uetani N, Kato K, Ogura H, Mizuno K, Kawano K, Mikoshiba K, Yakura H, Asano M & Iwakura Y (2000) Impaired learning with enhanced hippocampal long-term potentiation in PTPdelta-deficient mice. EMBO J19, 27752785.
  • 36
    Wallace MJ, Batt J, Fladd CA, Henderson JT, Skarnes W & Rotin D (1999) Neuronal defects and posterior pituitary hypoplasia in mice lacking the receptor tyrosine phosphatase PTPsigma. Nat Genet21, 334338.
  • 37
    Aricescu AR, McKinnell IW, Halfter W & Stoker AW (2002) Heparan sulfate proteoglycans are ligands for receptor protein tyrosine phosphatase sigma. Mol Cell Biol22, 18811892.
  • 38
    Fox AN & Zinn K (2005) The heparan sulfate proteoglycan syndecan is an in vivo ligand for the Drosophila LAR receptor tyrosine phosphatase. Curr Biol15, 17011711.
  • 39
    Shen Y, Tenney AP, Busch SA, Horn KP, Cuascut FX, Liu K, He Z, Silver J & Flanagan JG (2009) PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science326, 592596.
  • 40
    Coles CH, Shen Y, Tenney AP, Siebold C, Sutton GC, Lu W, Gallagher JT, Jones EY, Flanagan JG & Aricescu AR (2011) Proteoglycan-specific molecular switch for RPTPsigma clustering and neuronal extension. Science332, 484488.
  • 41
    Biersmith BH, Hammel M, Geisbrecht ER & Bouyain S (2011) The immunoglobulin-like domains 1 and 2 of the protein tyrosine phosphatase LAR adopt an unusual horseshoe-like conformation. J Mol Biol408, 616627.
  • 42
    Kwon SK, Woo J, Kim SY, Kim H & Kim E (2010) Trans-synaptic adhesions between netrin-G ligand-3 (NGL-3) and receptor tyrosine phosphatases LAR, protein-tyrosine phosphatase delta (PTPdelta), and PTPsigma via specific domains regulate excitatory synapse formation. J Biol Chem285, 1396613978.
  • 43
    Woo J, Kwon SK, Choi S, Kim S, Lee JR, Dunah AW, Sheng M & Kim E (2009) Trans-synaptic adhesion between NGL-3 and LAR regulates the formation of excitatory synapses. Nat Neurosci12, 428437.
  • 44
    Takahashi H, Arstikaitis P, Prasad T, Bartlett TE, Wang YT, Murphy TH & Craig AM (2011) Postsynaptic TrkC and presynaptic PTPsigma function as a bidirectional excitatory synaptic organizing complex. Neuron69, 287303.
  • 45
    Tonks N, Charbonneau H, Diltz C, Fischer E & Walsh K (1988) Demonstration that the leukocyte common antigen CD45 is a protein tyrosine phosphatase. Biochemistry27, 86958701.
  • 46
    Charbonneau H, Tonks N, Walsh K & Fischer E (1988) The leukocyte common antigen (CD45): a putative receptor-linked protein tyrosine phosphatase. Proc Natl Acad Sci USA85, 71827186.
  • 47
    Trowbridge I & Thomas M (1994) CD45: an emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development. Annu Rev Immunol12, 85116.
  • 48
    Kung C, Pingel J, Heikinheio M, Klemola T, Varkila K, Yoo L, Vuopala K, Poyhonen M, Uhari M, Rogers M et al. (2000) Mutations in the tyrosine phosphatase CD45 gene in a child with severe combined immunodeficiency disease. Nat Med6, 343345.
  • 49
    Kishihara K, Penninger J, Wallace V, Kündig T, Kawai K, Wakeham A, Timms E, PFfeffer K, Ohashi P & Thomas M (1993) Normal B lymphocyte development but impaired T cell maturation in CD45-exon 6 protein tyrosine phosphatase-deficient mice. Cell74, 143156.
  • 50
    Ledbetter J, Tonks N, Fischer E & Clark E (1988) CD45 regulates signal transduction and lymphocyte activation by specific association with receptor molecules on T or B cells. Proc Natl Acad Sci USA85, 86288632.
  • 51
    Janeway CJ (1992) The T cell receptor as a multicomponent signalling machine: CD4/CD8 coreceptors and CD45 in T cell activation. Annu Rev Immunol10, 645674.
  • 52
    Hermiston M, Xu Z & Weiss A (2003) CD45: a critical regulator of signaling thresholds in immune cells. Annu Rev Immunol21, 107137.
  • 53
    Hermiston M, Zikherman J & Zhu J (2009) CD45, CD148, and Lyp/Pep: critical phosphatases regulating Src family kinase signaling networks in immune cells. Immunol Rev228, 288311.
  • 54
    Irles C, Symons A, Michel F, Bakker T, van der Merwe P & Acuto O (2003) CD45 ectodomain controls interaction with GEMs and Lck activity for optimal TCR signaling. Nat Immunol4, 189197.
  • 55
    Novak T, Farber D, Leitenberg D, Hong S, Johnson P & Bottomly K (1994) Isoforms of the transmembrane tyrosine phosphatase CD45 differentially affect T cell recognition. Immunity1, 109119.
  • 56
    Earl L & Baum L (2008) CD45 Glycosylation controls T-cell life and death. Immunol Cell Biol86, 608615.
  • 57
    Pulido R & Sánchez-Madrid F (1992) Glycosylation of CD45: carbohydrate processing through Golgi appartaus is required for cell surface expression and protein stability. Eur J Immunol22, 463468.
  • 58
    Earl L, Bi S & Baum L (2010) N- and O-glycans modulate galectin-1 binding, CD45 signaling, and T cell death. J Biol Chem285, 22322244.
  • 59
    Perillo N, Pace K, Seilhamer J & Baum L (1995) Apoptosis of T cells mediated by galectin-1. Nature378, 736739.
  • 60
    Barondes SH, Castronovo V, Cooper DNW, Cummings RD, Drickamer K, Feizi T, Gitt MA, Hirabayashi J, Hughes C, Kasai K-I et al. (1994) Galectins: a family of animal β-galactoside-binding lectins. Cell76, 597598.
  • 61
    Hirabayashi J, Hashidate T, Arata Y, Nishi N, Nakamura T, Hirashima M, Urashima T, Oka T, Futai M, Muller WE et al. (2002) Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta1572, 232254.
  • 62
    Hughes C (1999) Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochim Biophys Acta1473, 172185.
  • 63
    Walzel H, Schulz U, Neels P & Brock J (1999) Galectin-1, a natural ligand for the receptor-type protein tyrosine phosphatase CD45. Immunol Lett67, 193202.
  • 64
    Symons A, Cooper D & Barclay A (2000) Characterization of the interaction between galectin-1 and lymphocyte glycoproteins CD45 and Thy-1. Glycobiology10, 559563.
  • 65
    Pace K, Lee C, Steward P & Baum L (1999) Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin-1. J Immunol163, 38013811.
  • 66
    Nguyen J, Evans D, Galvan M, Pace K, Leitenberg D, Bui T & Baum L (2001) CD45 modulates galectin-1-induced T cell death: regulation by expression of core 2 O-glycans. J Immunol167, 56975707.
  • 67
    Kim Y-S, Kang H-Y, Kim J-Y, Oh S, Kim C-H, Ryo CJ, Miyoshi E, Taniguchi N & Ko JH (2006) Identification of target proteins of N-acetylgulcosaminyl transferase V in huan colon cancer and implications of protein tyrosine phosphatase kappa in enhanced cancer cell migration. Proteomics6, 11871191.
  • 68
    Kim Y-S, Jung J-A, Kim H-J, Ahn YH, Yoo JS, Oh S, Cho C, Yoo H-S & Ko J-K (2011) Galectin-3 binding protein promotes cell motility in colon cancer by stimulating the shedding of protein tyrosine prhosphatase kappa by proprotein convertase 5. Biochem Biophys Res Commun404, 96102.
  • 69
    Seetharaman J, Kanigsberg A, Slaaby R, Leffler H, Barondes SH & Rini JM (1998) X-ray crystal structure of the human galectin-3 carbohydrate recognition domain at 2.1 Å resolution. J Biol Chem273, 1304713052.
  • 70
    Zondag GCM, Koningstein GM, Jiang YP, Sap J, Moolenaar WH & Gebbink MFBG (1995) Homophilic interactions mediated by receptor tyrosine phosphatases μ and κ. Acritical role for the novel extracellular MAM domain. J Biol Chem270, 1424714250.
  • 71
    Brady-Kalnay S, Flint A & Tonks N (1993) Homophilic binding of PTPu, a receptor-type protein tyrosine phosphatase, can mediate cell–cell aggregation. J Cell Biol122, 961972.
  • 72
    Sap J, Jiany Y, Friedlander D, Grumet M & Schlessinger J (1994) Receptor tyrosine phosphatase R-PTP-kappa mediates homophilic binding. Mol Cell Biol14, 19.
  • 73
    Wang J & Bixby JL (1999) Receptor tyrosine phosphatase-δ is a homophilic, neurite-promoting cell adhesion molecule for CNS neurons. Mol Cell Neurosci14, 370384.
  • 74
    Cheng J, Wu K, Armanini M, O’Rourke N, Dowbenko D & Lasky L (1997) A novel protein-tyrosine phosphatase related to the homotypically adhering k and u receptors. J Biol Chem272, 72647277.
  • 75
    Yu J, Becka S, Zhang P, Zhang X, Brady-Kalnay SM & Wang Z (2008) Tumor-derived extracellular mutations of PTPRT/PTPρ are defective in cell adhesion. Mol Cancer Res6, 11061113.
  • 76
    Becka S, Zhang P, Craig SE, Lodowski DT, Wang Z & Brady-Kalnay S (2010) Characterization of the adhesive properties of the type iib subfamily of RPTPs. Cell Commun Adhes17, 3447.
  • 77
    Gebbink M, Zondag G, Wubbolts R, Beijersbergen R, van Etten I & Moolenaar W (1993) Cell–cell adhesion mediated by a receptor-like protein tyrosine phosphatase. J Biol Chem268, 1610116104.
  • 78
    Zhang P, Becka S, Craig SE, Lodowski DT, Brady-Kalnay S & Wang Z (2009) Cancer-derived mutations in the fibronectin III repeats of PTPRT/PTPrho inhibit cell–cell aggregation. Cell Commun Adhes16, 146153.
  • 79
    Brady-Kalnay S & Tonks N (1994) identification of the homophilic binding site of the receptor protein tyrosine phosphatase PTPM. J Biol Chem269, 2847228477.
  • 80
    Cismasiu V, Denes S, Reiländer H, Michel H & Szedlacsek S (2004) The MAM (meprin/A5-protein/PTPmu) domain is a homophilic binding site promoting the lateral dimerization of receptor-like protein-tyrosine phosphatase mu. J Biol Chem279, 2692226931.
  • 81
    Aricescu AR, Hon W-C, Siebold C, Lu W, van der Merwe PA & Jones EY (2006) Molecular analysis of receptor protein tyrosine phosphatase [mu]-mediated cell adhesion. EMBO J25, 701712.
  • 82
    Aricescu AR & Jones EY (2007) Immunoglobulin superfamily cell adhesion molecules: zippers and signals. Curr Opin Cell Biol19, 543550.
  • 83
    Rosdahl J, Ensslen S, Niedenthal J & Brady-Kalnay S (2003) PTPμ-dependent growth cone rearrangement is regulated by Cdc42. J Neurobiol56, 199208.
  • 84
    Ensslen-Craig SE & Brady-Kalnay SM (2005) PTPμ expression and catalytic activity are required for PTPμ-mediated neurite outgrowth and repulsion. Mol Cell Neurosci28, 177188.
  • 85
    Aricescu AR, Siebold C, Choudhuri K, Chang VT, Lu W, Davis SJ, van der Merwe PA & Jones EY (2007) Structure of a tyrosine phosphatase adhesive interaction reveals a spacer-clamp mechanism. Science317, 12171220.
  • 86
    Majeti R, Bilwes AM, Noel JP, Hunter T & Weiss A (1998) Dimerization-induced inhibition of receptor protein tyrosine phosphatase function through an inhibitory wedge. Science279, 8891.
  • 87
    Takeda A, Wu JJ & Maizel AL (1992) Evidence for monomeric and dimeric forms of CD45 associated with a 30-kDa phosphorylated protein. J Biol Chem267, 1665116659.
  • 88
    Lee S, Faux C, Nixon J, Alete D, Chilton J, Hawadle M & Stoker AW (2007) Dimerization of protein tyrosine phosphatase σ governs both ligand binding and isoform specificity. Mol Cell Biol27, 17951808.
  • 89
    Heldin C & Ostman A (1996) Ligand-induced dimerization of growth factor receptors: variations on the theme. Cytokine Growth Factor Rev7, 310.
  • 90
    Hubbard S, Mohammadi M & Schlessinger J (1998) Autoregulatory mechanisms in protein-tyrosine kinases. J Biol Chem15, 1198711990.
  • 91
    Hower A, Beltran P & Bixby J (2009) Dimerization of tyrosine phosphatase PTPRO decreases its activity and ability to inactivate TrkC. J Neurochem110, 16351647.
  • 92
    Perez-Pinera P, Zhang W, Chang Y, Vega JA & Deuel TF (2007) Anaplastic lymphoma kinase is activated through the pleiotrophin/receptor protein-tyrosine phosphatase β/ζ signaling pathway. J Biol Chem282, 2868328690.
  • 93
    Shintani T & Noda M (2008) Protein tyrosine phosphatase receptor type Z dephosphorylates TrkA receptors and attenuates NGF-dependent neurite outgrowth of PC12 cells. J Biochem144, 259266.
  • 94
    Xu Y, Xia W, Baker D, Zhou J, Cha HC, Voorhees JJ & Fisher GJ (2011) Receptor-type protein tyrosine phsphatase β (RPTP-β) directly dephosphorylates and regulates hepatocyte growth factor receptor (HGFR/Met) function. J Biol Chem286, 1598015988.
  • 95
    Beltran P, Bixby J & Masters B (2003) Expression of PTPRO during mouse development suggests involvement in axonogenesis and differentiation of NT-3 and NGF-dependent neurons. J Comp Neurol456, 384395.
  • 96
    Gonzalez-Brito M & Bixby J (2009) Protein tyrosine phosphatase receptor type O regulates development and function of the sensory nervous system. Mol Cell Neurosci42, 458465.
  • 97
    Segal RA (2003) Selectivity in neurotrophin signaling: theme and variations. Annu Rev Neurosci26, 299330.
  • 98
    Bowden ET, Stoica GE & Wellstein A (2002) Anti-apoptotic signaling of pleiotrophin through its receptor, anaplastic lymphoma kinase. J Biol Chem277, 3586235868.
  • 99
    Powers C, Aigner A, Stoica GE, McDonnell K & Wellstein A (2002) Pleiotrophin signaling through anaplastic lymphoma kinase is rate-limiting for glioblastoma growth. J Biol Chem277, 1415314158.
  • 100
    Stoica GE, Kuo A, Aigner A, Sunitha I, Souttou B, Malerczyk C, Caughey DJ, Wen D, Karavanov A, Riegel AT et al. (2001) Identification of anaplastic lymphoma kinase as a receptor for the growth factor pleiotrophin. J Biol Chem276, 1677216779.
  • 101
    Fischer E (1999) Cell signaling by protein tyrosine phosphorylation. Adv Enzyme Regul39, 359369.
  • 102
    Mauro L & Dixon J (1994) ‘Zip codes’ direct intracellular protein tyrosine phosphatases to the corect cellular ‘address’. Trends Biochem Sci19, 151155.
  • 103
    Andersen J, Elson A, Lammers R, Rømer J, Clausen J, Møller K & Møller N (2001) Comparative study of protein tyrosine phopshatase-epsilon isoforms: membrane localization confers specificity in cellular signalling. Biochem J354, 581590.
  • 104
    Møller N, Møller K, Lammers R, Kharitonenkov A, Hoppe E, Wiberg F, Sures I & Ullrich A (1995) Selective down-regulation of the insulin receptor signal by protein-tyrosine phosphatase epsilon. J Biol Chem270, 126131.
  • 105
    Dilaver G, van de Vorstenbosch R, Tárrega C, Ríos P, Pulido R, van Aerde K, Fransen J & Hendriks W (2007) Proteolytic processing of the receptor-type protein tyrosine phosphatase PTPBR7. FEBS J274, 96108.
  • 106
    Gil-Henn H, Volohonsky G & Elson A (2001) Regulation of protein-tyrosine phosphatases alpha and epsilon by calpain-mediated proteolytic cleavage. J Biol Chem276, 3177231779.
  • 107
    Chow J, Fujikawa A, Shimizu H & Noda M (2008) Plasmin-mediated processing of protein tyrosine phosphatase receptor type Z in the mouse brain. Neuroletters442, 208212.
  • 108
    Aicher B, Lerch MM, Müller T, Schilling J & Ullrich A (1997) Cellular redistribution of protein tyrosine phosphatases LAR and PTPσ by inducible proteolytic processing. J Cell Biol138, 681696.
  • 109
    Serra-Pages C, Saito H & Streuli M (1994) Mutational analysis of proprotein processing, subunit association, and shedding of the LAR transmembrane protein tyrosine phosphatase. J Biol Chem269, 2363223641.
  • 110
    Streuli M, Krueger NX, Ariniello PD, Tang M, Munro JM, Blattler WA, Adler DA, Disteche CM & Saito H (1992) Expression of the receptor-linked protein tyrosine phosphatase LAR: proteolytic cleavage and shedding of the CAM-like extracellular region. EMBO J11, 897907.
  • 111
    Maeda N, Hamanaka H, Shintani T, Nishiwaki T & Noda M (1994) Multiple receptor-like protein tyrosine phosphatases in the form of chondroitin sulfate proteoglycan. FEBS Lett354, 6770.
  • 112
    Sakurai T, Friedlander D & Grumet M (1996) Expression of polypeptide variants of receptor-type protein tyrosine phosphatase beta: the secreted form, phosphacan, increase dramatically during embryonic development and modulates glial cell behavior in vitro. J Neurosci Res43, 694706.