SEARCH

SEARCH BY CITATION

References

  • 1
    Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J & Mustelin T (2004) Protein tyrosine phosphatases in the human genome. Cell117, 699711.
  • 2
    Barford D, Flint AJ & Tonks NK (1994) Crystal structure of human protein tyrosine phosphatase 1B. Science263, 13971404.
  • 3
    Jia Z, Barford D, Flint AJ & Tonks NK (1995) Structural basis for phosphotyrosine peptide recognition by protein tyrosine phosphatase 1B. Science268, 17541758.
  • 4
    Yuvaniyama J, Denu JM, Dixon JE & Saper MA (1996) Crystal structure of the dual specificity protein phosphatase VHR. Science272, 13281331.
  • 5
    Barr AJ, Ugochukwu E, Lee WH, King ON, Filippakopoulos P, Alfano I, Savitsky P, Burgess-Brown NA, Muller S & Knapp S (2009) Large-scale structural analysis of the classical human protein tyrosine phosphatome. Cell136, 352363.
  • 6
    Tabernero L, Aricescu AR, Jones EY & Szedlacsek SE (2008) Protein tyrosine phosphatases: structure–function relationships. FEBS J275, 867882.
  • 7
    Hellmuth K, Grosskopf S, Lum CT, Wurtele M, Roder N, von Kries JP, Rosario M, Rademann J & Birchmeier W (2008) Specific inhibitors of the protein tyrosine phosphatase Shp2 identified by high-throughput docking. Proc Natl Acad Sci USA105, 72757280.
  • 8
    Shen K, Keng YF, Wu L, Guo XL, Lawrence DS & Zhang ZY (2001) Acquisition of a specific and potent PTP1B inhibitor from a novel combinatorial library and screening procedure. J Biol Chem276, 4731147319.
  • 9
    Lantz KA, Hart SG, Planey SL, Roitman MF, Ruiz-White IA, Wolfe HR & McLane MP (2010) Inhibition of PTP1B by trodusquemine (MSI-1436) causes fat-specific weight loss in diet-induced obese mice. Obesity (Silver Spring)18, 15161523.
  • 10
    Scott LM, Lawrence HR, Sebti SM, Lawrence NJ & Wu J (2010) Targeting protein tyrosine phosphatases for anticancer drug discovery. Curr Pharm Des16, 18431862.
  • 11
    Sheriff S, Beno BR, Zhai W, Kostich WA, McDonnell PA, Kish K, Goldfarb V, Gao M, Kiefer SE, Yanchunas J et al. (2011) Molecule receptor protein tyrosine phosphatase gamma (RPTPgamma) ligands that inhibit phosphatase activity via perturbation of the tryptophan-proline-aspartate (WPD) loop. J Med Chem54, 65486562.
  • 12
    Eswaran J, von Kries JP, Marsden B, Longman E, Debreczeni JE, Ugochukwu E, Turnbull A, Lee WH, Knapp S & Barr AJ (2006) Crystal structures and inhibitor identification for PTPN5, PTPRR and PTPN7: a family of human MAPK-specific protein tyrosine phosphatases. Biochem J395, 483491.
  • 13
    Yu X, Sun JP, He Y, Guo X, Liu S, Zhou B, Hudmon A & Zhang ZY (2007) Structure, inhibitor, and regulatory mechanism of Lyp, a lymphoid-specific tyrosine phosphatase implicated in autoimmune diseases. Proc Natl Acad Sci USA104, 1976719772.
  • 14
    Teichmann K, Kuhl T, Konnig I, Wieligmann K, Zacharias M & Imhof D (2010) Modulation of SHP-1 phosphatase activity by monovalent and bivalent SH2 phosphopeptide ligands. Biopolymers93, 102112.
  • 15
    Kim SE, Bahta M, Lountos GT, Ulrich RG, Burke TR Jr & Waugh DS (2011) Isothiazolidinone (IZD) as a phosphoryl mimetic in inhibitors of the Yersinia pestis protein tyrosine phosphatase YopH. Acta Crystallogr D Biol Crystallogr67, 639645.
  • 16
    Liu F, Hakami RM, Dyas B, Bahta M, Lountos GT, Waugh DS, Ulrich RG & Burke TR Jr (2010) A rapid oxime linker-based library approach to identification of bivalent inhibitors of the Yersinia pestis protein-tyrosine phosphatase, YopH. Bioorg Med Chem Lett20, 28132816.
  • 17
    Bilwes AM, den Hertog J, Hunter T & Noel JP (1996) Structural basis for inhibition of receptor protein-tyrosine phosphatase-alpha by dimerization. Nature382, 555559.
  • 18
    Lemmon MA & Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell141, 11171134.
  • 19
    Majeti R, Bilwes AM, Noel JP, Hunter T & Weiss A (1998) Dimerization-induced inhibition of receptor protein tyrosine phosphatase function through an inhibitory wedge. Science279, 8891.
  • 20
    den Hertog J, Ostman A & Bohmer FD (2008) Protein tyrosine phosphatases: regulatory mechanisms. FEBS J275, 831847.
  • 21
    Blanchetot C, Tertoolen LG & den Hertog J (2002) Regulation of receptor protein-tyrosine phosphatase alpha by oxidative stress. EMBO J21, 493503.
  • 22
    Jiang G, den Hertog J & Hunter T (2000) Receptor-like protein tyrosine phosphatase alpha homodimerizes on the cell surface. Mol Cell Biol20, 59175929.
  • 23
    Hower AE, Beltran PJ & Bixby JL (2009) Dimerization of tyrosine phosphatase PTPRO decreases its activity and ability to inactivate TrkC. J Neurochem110, 16351647.
  • 24
    Walchli S, Espanel X & Hooft van Huijsduijnen R (2005) Sap-1/PTPRH activity is regulated by reversible dimerization. Biochem Biophys Res Commun331, 497502.
  • 25
    Lee S, Faux C, Nixon J, Alete D, Chilton J, Hawadle M & Stoker AW (2007) Dimerization of protein tyrosine phosphatase sigma governs both ligand binding and isoform specificity. Mol Cell Biol27, 17951808.
  • 26
    Takeda A, Wu JJ & Maizel AL (1992) Evidence for monomeric and dimeric forms of CD45 associated with a 30-kDa phosphorylated protein. J Biol Chem267, 1665116659.
  • 27
    Toledano-Katchalski H, Tiran Z, Sines T, Shani G, Granot-Attas S, den Hertog J & Elson A (2003) Dimerization in vivo and inhibition of the nonreceptor form of protein tyrosine phosphatase epsilon. Mol Cell Biol23, 54605471.
  • 28
    Tertoolen LG, Blanchetot C, Jiang G, Overvoorde J, Gadella TW Jr, Hunter T & den Hertog J (2001) Dimerization of receptor protein-tyrosine phosphatase alpha in living cells. BMC Cell Biol2, 8.
  • 29
    Noordman YE, Augustus ED, Schepens JT, Chirivi RG, Rios P, Pulido R & Hendriks WJ (2008) Multimerisation of receptor-type protein tyrosine phosphatases PTPBR7 and PTP-SL attenuates enzymatic activity. Biochim Biophys Acta1783, 275286.
  • 30
    Sternberg MJ & Gullick WJ (1990) A sequence motif in the transmembrane region of growth factor receptors with tyrosine kinase activity mediates dimerization. Protein Eng3, 245248.
  • 31
    Kim S, Jeon TJ, Oberai A, Yang D, Schmidt JJ & Bowie JU (2005) Transmembrane glycine zippers: physiological and pathological roles in membrane proteins. Proc Natl Acad Sci USA102, 1427814283.
  • 32
    Langosch D & Arkin IT (2009) Interaction and conformational dynamics of membrane-spanning protein helices. Protein Sci18, 13431358.
  • 33
    Matthews EE, Zoonens M & Engelman DM (2006) Dynamic helix interactions in transmembrane signaling. Cell127, 447450.
  • 34
    Takahashi T, Takahashi K, Mernaugh RL, Tsuboi N, Liu H & Daniel TO (2006) A monoclonal antibody against CD148, a receptor-like tyrosine phosphatase, inhibits endothelial-cell growth and angiogenesis. Blood108, 12341242.
  • 35
    Groen A, Overvoorde J, van der Wijk T & den Hertog J (2008) Redox regulation of dimerization of the receptor protein-tyrosine phosphatases RPTPalpha, LAR, RPTPmu and CD45. FEBS J275, 25972604.
  • 36
    van der Wijk T, Blanchetot C, Overvoorde J & den Hertog J (2003) Redox-regulated rotational coupling of receptor protein-tyrosine phosphatase alpha dimers. J Biol Chem278, 1396813974.
  • 37
    Aricescu AR, Siebold C, Choudhuri K, Chang VT, Lu W, Davis SJ, van der Merwe PA & Jones EY (2007) Structure of a tyrosine phosphatase adhesive interaction reveals a spacer-clamp mechanism. Science317, 12171220.
  • 38
    Coles CH, Shen Y, Tenney AP, Siebold C, Sutton GC, Lu W, Gallagher JT, Jones EY, Flanagan JG & Aricescu AR (2011) Proteoglycan-specific molecular switch for RPTPsigma clustering and neuronal extension. Science332, 484488.
  • 39
    Xu Z & Weiss A (2002) Negative regulation of CD45 by differential homodimerization of the alternatively spliced isoforms. Nat Immunol3, 764771.
  • 40
    Fukada M, Fujikawa A, Chow JP, Ikematsu S, Sakuma S & Noda M (2006) Protein tyrosine phosphatase receptor type Z is inactivated by ligand-induced oligomerization. FEBS Lett580, 40514056.
  • 41
    Meng K, Rodriguez-Pena A, Dimitrov T, Chen W, Yamin M, Noda M & Deuel TF (2000) Pleiotrophin signals increased tyrosine phosphorylation of beta beta-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase beta/zeta. Proc Natl Acad Sci USA97, 26032608.
  • 42
    Fujikawa A, Shirasaka D, Yamamoto S, Ota H, Yahiro K, Fukada M, Shintani T, Wada A, Aoyama N, Hirayama T et al. (2003) Mice deficient in protein tyrosine phosphatase receptor type Z are resistant to gastric ulcer induction by VacA of Helicobacter pylori. Nat Genet33, 375381.
  • 43
    Lupetti P, Heuser JE, Manetti R, Massari P, Lanzavecchia S, Bellon PL, Dallai R, Rappuoli R & Telford JL (1996) Oligomeric and subunit structure of the Helicobacter pylori vacuolating cytotoxin. J Cell Biol133, 801807.
  • 44
    Maeda N, Hamanaka H, Shintani T, Nishiwaki T & Noda M (1994) Multiple receptor-like protein tyrosine phosphatases in the form of chondroitin sulfate proteoglycan. FEBS Lett354, 6770.
  • 45
    Herradon G & Ezquerra L (2009) Blocking receptor protein tyrosine phosphatase beta/zeta: a potential therapeutic strategy for Parkinson’s disease. Curr Med Chem16, 33223329.
  • 46
    Whiteford JR, Xian X, Chaussade C, Vanhaesebroeck B, Nourshargh S & Couchman JR (2011) Syndecan-2 is a novel ligand for the protein tyrosine phosphatase receptor CD148. Mol Biol Cell22, 36093624.
  • 47
    Takahashi K, Mernaugh RL, Friedman DB, Weller R, Tsuboi N, Yamashita H, Quaranta V & Takahashi T (2012) Thrombospondin-1 acts as a ligand for CD148 tyrosine phosphatase. Proc Natl Acad Sci USA109, 19851990.
  • 48
    Ostman A, Frijhoff J, Sandin A & Bohmer FD (2011) Regulation of protein tyrosine phosphatases by reversible oxidation. J Biochem150, 345356.
  • 49
    Rhee SG, Bae YS, Lee SR & Kwon J (2000) Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci STKE2000, pe1.
  • 50
    Veal EA, Day AM & Morgan BA (2007) Hydrogen peroxide sensing and signaling. Mol Cell26, 114.
  • 51
    Stone JR & Yang S (2006) Hydrogen peroxide: a signaling messenger. Antioxid Redox Signal8, 243270.
  • 52
    Winterbourn CC & Hampton MB (2008) Thiol chemistry and specificity in redox signaling. Free Radic Biol Med45, 549561.
  • 53
    Winterbourn CC (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol4, 278286.
  • 54
    Conrad M, Sandin A, Forster H, Seiler A, Frijhoff J, Dagnell M, Bornkamm GW, Radmark O, Hooft van Huijsduijnen R, Aspenstrom P et al. (2010) 12/15-lipoxygenase-derived lipid peroxides control receptor tyrosine kinase signaling through oxidation of protein tyrosine phosphatases. Proc Natl Acad Sci USA107, 1577415779.
  • 55
    Woo HA, Yim SH, Shin DH, Kang D, Yu DY & Rhee SG (2010) Inactivation of peroxiredoxin I by phosphorylation allows localized H(2)O(2) accumulation for cell signaling. Cell140, 517528.
  • 56
    Salmeen A, Andersen JN, Myers MP, Meng TC, Hinks JA, Tonks NK & Barford D (2003) Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature423, 769773.
  • 57
    van Montfort RL, Congreve M, Tisi D, Carr R & Jhoti H (2003) Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature423, 773777.
  • 58
    Yang J, Groen A, Lemeer S, Jans A, Slijper M, Roe SM, den Hertog J & Barford D (2007) Reversible oxidation of the membrane distal domain of receptor PTPalpha is mediated by a cyclic sulfenamide. Biochemistry46, 709719.
  • 59
    Fauman EB, Cogswell JP, Lovejoy B, Rocque WJ, Holmes W, Montana VG, Piwnica-Worms H, Rink MJ & Saper MA (1998) Crystal structure of the catalytic domain of the human cell cycle control phosphatase, Cdc25A. Cell93, 617625.
  • 60
    Reynolds RA, Yem AW, Wolfe CL, Deibel MR Jr, Chidester CG & Watenpaugh KD (1999) Crystal structure of the catalytic subunit of Cdc25B required for G2/M phase transition of the cell cycle. J Mol Biol293, 559568.
  • 61
    Caselli A, Marzocchini R, Camici G, Manao G, Moneti G, Pieraccini G & Ramponi G (1998) The inactivation mechanism of low molecular weight phosphotyrosine-protein phosphatase by H2O2. J Biol Chem273, 3255432560.
  • 62
    Lee AC, Fenster BE, Ito H, Takeda K, Bae NS, Hirai T, Yu ZX, Ferrans VJ, Howard BH & Finkel T (1999) Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem274, 79367940.
  • 63
    Seth D & Rudolph J (2006) Redox regulation of MAP kinase phosphatase 3. Biochemistry45, 84768487.
  • 64
    Krishnan N, Fu C, Pappin DJ & Tonks NK (2011) H2S-Induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response. Sci Signal4, ra86.
  • 65
    Barford D (2004) The role of cysteine residues as redox-sensitive regulatory switches. Curr Opin Struct Biol14, 679686.
  • 66
    Haque A, Andersen JN, Salmeen A, Barford D & Tonks NK (2011) Conformation-sensing antibodies stabilize the oxidized form of PTP1B and inhibit its phosphatase activity. Cell147, 185198.
  • 67
    Persson C, Sjoblom T, Groen A, Kappert K, Engstrom U, Hellman U, Heldin CH, den Hertog J & Ostman A (2004) Preferential oxidation of the second phosphatase domain of receptor-like PTP-alpha revealed by an antibody against oxidized protein tyrosine phosphatases. Proc Natl Acad Sci USA101, 18861891.
  • 68
    Groen A, Lemeer S, van der Wijk T, Overvoorde J, Heck AJ, Ostman A, Barford D, Slijper M & den Hertog J (2005) Differential oxidation of protein-tyrosine phosphatases. J Biol Chem280, 1029810304.
  • 69
    Ross SH, Lindsay Y, Safrany ST, Lorenzo O, Villa F, Toth R, Clague MJ, Downes CP & Leslie NR (2007) Differential redox regulation within the PTP superfamily. Cell Signal19, 15211530.
  • 70
    Kwon J, Qu CK, Maeng JS, Falahati R, Lee C & Williams MS (2005) Receptor-stimulated oxidation of SHP-2 promotes T-cell adhesion through SLP-76-ADAP. EMBO J24, 23312341.
  • 71
    Weibrecht I, Bohmer SA, Dagnell M, Kappert K, Ostman A & Bohmer FD (2007) Oxidation sensitivity of the catalytic cysteine of the protein-tyrosine phosphatases SHP-1 and SHP-2. Free Radic Biol Med43, 100110.
  • 72
    Chen CY, Willard D & Rudolph J (2009) Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines. Biochemistry48, 13991409.
  • 73
    Bae YS, Sung JY, Kim OS, Kim YJ, Hur KC, Kazlauskas A & Rhee SG (2000) Platelet-derived growth factor-induced H(2)O(2) production requires the activation of phosphatidylinositol 3-kinase. J Biol Chem275, 1052710531.
  • 74
    Berniakovich I, Trinei M, Stendardo M, Migliaccio E, Minucci S, Bernardi P, Pelicci PG & Giorgio M (2008) p66Shc-generated oxidative signal promotes fat accumulation. J Biol Chem283, 3428334293.
  • 75
    Choi MH, Lee IK, Kim GW, Kim BU, Han YH, Yu DY, Park HS, Kim KY, Lee JS, Choi C et al. (2005) Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature435, 347353.
  • 76
    Chen K, Kirber MT, Xiao H, Yang Y & Keaney JF Jr (2008) Regulation of ROS signal transduction by NADPH oxidase 4 localization. J Cell Biol181, 11291139.
  • 77
    Kwon J, Shatynski KE, Chen H, Morand S, de Deken X, Miot F, Leto TL & Williams MS (2010) The nonphagocytic NADPH oxidase Duox1 mediates a positive feedback loop during T cell receptor signaling. Sci Signal3, ra59.
  • 78
    Liou GY & Storz P (2010) Reactive oxygen species in cancer. Free Radic Res44, 479496.
  • 79
    Rassool FV, Gaymes TJ, Omidvar N, Brady N, Beurlet S, Pla M, Reboul M, Lea N, Chomienne C, Thomas NS et al. (2007) Reactive oxygen species, DNA damage, and error-prone repair: a model for genomic instability with progression in myeloid leukemia?Cancer Res67, 87628771.
  • 80
    Sallmyr A, Fan J, Datta K, Kim KT, Grosu D, Shapiro P, Small D & Rassool F (2008) Internal tandem duplication of FLT3 (FLT3/ITD) induces increased ROS production, DNA damage, and misrepair: implications for poor prognosis in AML. Blood111, 31733182.
  • 81
    Trachootham D, Alexandre J & Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?Nat Rev Drug Discov8, 579591.
  • 82
    Hole PS, Darley RL & Tonks A (2011) Do reactive oxygen species play a role in myeloid leukemias?Blood117, 58165826.
  • 83
    Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, Chiao PJ, Achanta G, Arlinghaus RB, Liu J et al. (2006) Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell10, 241252.
  • 84
    Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ, Fearon ER, Sundaresan M, Finkel T & Goldschmidt-Clermont PJ (1997) Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science275, 16491652.
  • 85
    Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GR & Chandel NS (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA107, 87888793.
  • 86
    Sattler M, Verma S, Shrikhande G, Byrne CH, Pride YB, Winkler T, Greenfield EA, Salgia R & Griffin JD (2000) The BCR/ABL tyrosine kinase induces production of reactive oxygen species in hematopoietic cells. J Biol Chem275, 2427324278.
  • 87
    Reddy MM, Fernandes MS, Salgia R, Levine RL, Griffin JD & Sattler M (2011) NADPH oxidases regulate cell growth and migration in myeloid cells transformed by oncogenic tyrosine kinases. Leukemia25, 281289.
  • 88
    Naughton R, Quiney C, Turner SD & Cotter TG (2009) Bcr-Abl-mediated redox regulation of the PI3K/AKT pathway. Leukemia23, 14321440.
  • 89
    Godfrey R, Arora D, Bauer R, Stopp S, Muller JP, Heinrich T, Bohmer SA, Dagnell M, Schnetzke U, Scholl S et al. (2012) Cell transformation by FLT3 ITD in acute myeloid leukemia involves oxidative inactivation of the tumor suppressor protein-tyrosine phosphatase DEP-1/PTPRJ. Blood119, 44994511.
  • 90
    Lou YW, Chen YY, Hsu SF, Chen RK, Lee CL, Khoo KH, Tonks NK & Meng TC (2008) Redox regulation of the protein tyrosine phosphatase PTP1B in cancer cells. FEBS J275, 6988.
  • 91
    Karisch R, Fernandez M, Taylor P, Virtanen C, St-Germain JR, Jin LL, Harris IS, Mori J, Mak TW, Senis YA et al. (2011) Global proteomic assessment of the classical protein-tyrosine phosphatome and ‘Redoxome’. Cell146, 826840.
  • 92
    Leslie NR & Foti M (2011) Non-genomic loss of PTEN function in cancer: not in my genes. Trends Pharmacol Sci32, 131140.
  • 93
    Silva A, Yunes JA, Cardoso BA, Martins LR, Jotta PY, Abecasis M, Nowill AE, Leslie NR, Cardoso AA & Barata JT (2008) PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability. J Clin Invest118, 37623774.
  • 94
    Covey TM, Edes K & Fitzpatrick FA (2007) Akt activation by arachidonic acid metabolism occurs via oxidation and inactivation of PTEN tumor suppressor. Oncogene26, 57845792.
  • 95
    Cao J, Schulte J, Knight A, Leslie NR, Zagozdzon A, Bronson R, Manevich Y, Beeson C & Neumann CA (2009) Prdx1 inhibits tumorigenesis via regulating PTEN/AKT activity. EMBO J28, 15051517.
  • 96
    Ostman A, Hellberg C & Bohmer FD (2006) Protein-tyrosine phosphatases and cancer. Nat Rev Cancer6, 307320.
  • 97
    Julien SG, Dube N, Hardy S & Tremblay ML (2011) Inside the human cancer tyrosine phosphatome. Nat Rev Cancer11, 3549.
  • 98
    Arora D, Stopp S, Bohmer SA, Schons J, Godfrey R, Masson K, Razumovskaya E, Ronnstrand L, Tanzer S, Bauer R et al. (2011) Protein-tyrosine phosphatase DEP-1 controls receptor tyrosine kinase FLT3 signaling. J Biol Chem286, 1091810929.
  • 99
    Kennelly PJ (2002) Protein kinases and protein phosphatases in prokaryotes: a genomic perspective. FEMS Microbiol Lett206, 18.
  • 100
    Bhaduri A & Sowdhamini R (2005) Genome-wide survey of prokaryotic O-protein phosphatases. J Mol Biol352, 736752.
  • 101
    Wolstencroft K, Lord P, Tabernero L, Brass A & Stevens R (2006) Protein classification using ontology classification. Bioinformatics22, e530e538.
  • 102
    Brenchley R, Tariq H, McElhinney H, Szoor B, Huxley-Jones J, Stevens R, Matthews K & Tabernero L (2007) The TriTryp phosphatome: analysis of the protein phosphatase catalytic domains. BMC Genomics8, 434.
  • 103
    Wehenkel A, Bellinzoni M, Grana M, Duran R, Villarino A, Fernandez P, Andre-Leroux G, England P, Takiff H, Cervenansky C et al. (2008) Mycobacterial Ser/Thr protein kinases and phosphatases: physiological roles and therapeutic potential. Biochim Biophys Acta1784, 193202.
  • 104
    Andreeva AV & Kutuzov MA (2008) Protozoan protein tyrosine phosphatases. Int J Parasitol38, 12791295.
  • 105
    Kutuzov MA & Andreeva AV (2008) Protein Ser/Thr phosphatases of parasitic protozoa. Mol Biochem Parasitol161, 8190.
  • 106
    Wilkes JM & Doerig C (2008) The protein-phosphatome of the human malaria parasite Plasmodium falciparum. BMC Genomics9, 412.
  • 107
    Bajsa J, Duke SO & Tekwani BL (2008) Plasmodium falciparum serine/threonine phoshoprotein phosphatases (PPP): from housekeeper to the ‘holy grail’. Curr Drug Targets9, 9971012.
  • 108
    Andersen JN, Mortensen OH, Peters GH, Drake PG, Iversen LF, Olsen OH, Jansen PG, Andersen HS, Tonks NK & Moller NP (2001) Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol Cell Biol21, 71177136.
  • 109
    Wolstencroft KJ, Stevens R, Tabernero L & Brass A (2005) PhosphaBase: an ontology-driven database resource for protein phosphatases. Proteins58, 290294.
  • 110
    Cozzone AJ, Grangeasse C, Doublet P & Duclos B (2004) Protein phosphorylation on tyrosine in bacteria. Arch Microbiol181, 171181.
  • 111
    Cozzone AJ (2005) Role of protein phosphorylation on serine/threonine and tyrosine in the virulence of bacterial pathogens. J Mol Microbiol Biotechnol9, 198213.
  • 112
    Weber SS, Ragaz C & Hilbi H (2009) Pathogen trafficking pathways and host phosphoinositide metabolism. Mol Microbiol71, 13411352.
  • 113
    Koksal AC, Nardozzi JD & Cingolani G (2009) Dimeric quaternary structure of the prototypical dual specificity phosphatase VH1. J Biol Chem284, 1012910137.
  • 114
    Phan J, Tropea JE & Waugh DS (2007) Structure-assisted discovery of Variola major H1 phosphatase inhibitors. Acta Crystallogr D Biol Crystallogr63, 698704.
  • 115
    Changela A, Martins A, Shuman S & Mondragon A (2005) Crystal structure of baculovirus RNA triphosphatase complexed with phosphate. J Biol Chem280, 1784817856.
  • 116
    Galan JE (1999) Interaction of Salmonella with host cells through the centisome 63 type III secretion system. Curr Opin Microbiol2, 4650.
  • 117
    Fu Y & Galan JE (1999) A salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature401, 293297.
  • 118
    Stebbins CE & Galan JE (2000) Modulation of host signaling by a bacterial mimic: structure of the Salmonella effector SptP bound to Rac1. Mol Cell6, 14491460.
  • 119
    Stebbins CE & Galan JE (2001) Structural mimicry in bacterial virulence. Nature412, 701705.
  • 120
    Bliska JB, Guan K, Dixon E & Falkow S (1991) Tyrosine phosphatase hydrolysis of host proteins by an essential Yersinia virulence determinant. Proc Natl Acad Sci USA88, 11871191.
  • 121
    Montagna LG, Ivanov MI & Bliska JB (2001) Identification of residues in the N-terminal domain of the yersinia tyrosine phosphatase that are critical for substrate recognition. J Biol Chem276, 50055011.
  • 122
    Evdokimov AG, Tropea JE, Routzahn KM, Copeland TD & Waugh DS (2001) Structure of the N-terminal domain of Yersinia pestis YopH at 2.0 A resolution. Acta Crystallogr D Biol Crystallogr57, 793799.
  • 123
    Smith CL, Khandelwal P, Keliikuli K, Zuiderweg ER & Saper MA (2001) Structure of the type III secretion and substrate-binding domain of Yersinia YopH phosphatase. Mol Microbiol42, 967979.
  • 124
    Khandelwal P, Keliikuli K, Smith CL, Saper MA & Zuiderweg ER (2002) Solution structure and phosphopeptide binding to the N-terminal domain of Yersinia YopH: comparison with a crystal structure. Biochemistry41, 1142511437.
  • 125
    Stuckey JA, Schubert HL, Fauman EB, Zhang ZY, Dixon JE & Saper MA (1994) Crystal structure of Yersinia protein tyrosine phosphatase at 2.5 A and the complex with tungstate. Nature370, 571575.
  • 126
    Schubert HL, Fauman EB, Stuckey JA, Dixon JE & Saper MA (1995) A ligand-induced conformational change in the Yersinia protein tyrosine phosphatase. Protein Sci4, 19041913.
  • 127
    Fauman EB, Yuvaniyama C, Schubert HL, Stuckey JA & Saper MA (1996) The X-ray crystal structures of Yersinia tyrosine phosphatase with bound tungstate and nitrate. Mechanistic implications. J Biol Chem271, 1878018788.
  • 128
    Brandao TA, Robinson H, Johnson SJ & Hengge AC (2009) Impaired acid catalysis by mutation of a protein loop hinge residue in a YopH mutant revealed by crystal structures. J Am Chem Soc131, 778786.
  • 129
    Phan J, Lee K, Cherry S, Tropea JE, Burke TR Jr & Waugh DS (2003) High-resolution structure of the Yersinia pestis protein tyrosine phosphatase YopH in complex with a phosphotyrosyl mimetic-containing hexapeptide. Biochemistry42, 1311313121.
  • 130
    Ivanov MI, Stuckey JA, Schubert HL, Saper MA & Bliska JB (2005) Two substrate-targeting sites in the Yersinia protein tyrosine phosphatase co-operate to promote bacterial virulence. Mol Microbiol55, 13461356.
  • 131
    Sun JP, Wu L, Fedorov AA, Almo SC & Zhang ZY (2003) Crystal structure of the Yersinia protein-tyrosine phosphatase YopH complexed with a specific small molecule inhibitor. J Biol Chem278, 3339233399.
  • 132
    Liu S, Zhou B, Yang H, He Y, Jiang ZX, Kumar S, Wu L & Zhang ZY (2008) Aryl vinyl sulfonates and sulfones as active site-directed and mechanism-based probes for protein tyrosine phosphatases. J Am Chem Soc130, 82518260.
  • 133
    Bahta M, Lountos GT, Dyas B, Kim SE, Ulrich RG, Waugh DS & Burke TR Jr (2011) Utilization of nitrophenylphosphates and oxime-based ligation for the development of nanomolar affinity inhibitors of the Yersinia pestis outer protein H (YopH) phosphatase. J Med Chem54, 29332943.
  • 134
    Stevenson G, Andrianopoulos K, Hobbs M & Reeves PR (1996) Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J Bacteriol178, 48854893.
  • 135
    Vincent C, Doublet P, Grangeasse C, Vaganay E, Cozzone AJ & Duclos B (1999) Cells of Escherichia coli contain a protein-tyrosine kinase, Wzc, and a phosphotyrosine-protein phosphatase, Wzb. J Bacteriol181, 34723477.
  • 136
    Bach H, Wong D & Av-Gay Y (2009) Mycobacterium tuberculosis PtkA is a novel protein tyrosine kinase whose substrate is PtpA. Biochem J420, 155160.
  • 137
    Hagelueken G, Huang H, Mainprize IL, Whitfield C & Naismith JH (2009) Crystal structures of Wzb of Escherichia coli and CpsB of Streptococcus pneumoniae, representatives of two families of tyrosine phosphatases that regulate capsule assembly. J Mol Biol392, 678688.
  • 138
    Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C, Basham D, Chillingworth T, Davies RM, Feltwell T, Holroyd S et al. (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature403, 665668.
  • 139
    Tolkatchev D, Shaykhutdinov R, Xu P, Plamondon J, Watson DC, Young NM & Ni F (2006) Three-dimensional structure and ligand interactions of the low molecular weight protein tyrosine phosphatase from Campylobacter jejuni. Protein Sci15, 23812394.
  • 140
    Castandet J, Prost JF, Peyron P, Astarie-Dequeker C, Anes E, Cozzone AJ, Griffiths G & Maridonneau-Parini I (2005) Tyrosine phosphatase MptpA of Mycobacterium tuberculosis inhibits phagocytosis and increases actin polymerization in macrophages. Res Microbiol156, 10051013.
  • 141
    Bach H, Papavinasasundaram KG, Wong D, Hmama Z & Av-Gay Y (2008) Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B. Cell Host Microbe3, 316322.
  • 142
    Singh R, Rao V, Shakila H, Gupta R, Khera A, Dhar N, Singh A, Koul A, Singh Y, Naseema M et al. (2003) Disruption of mptpB impairs the ability of Mycobacterium tuberculosis to survive in guinea pigs. Mol Microbiol50, 751762.
  • 143
    Silva AP & Tabernero L (2010) New strategies in fighting TB: targeting Mycobacterium tuberculosis-secreted phosphatases MptpA and MptpB. Future Med Chem2, 13251337.
  • 144
    Souza AC, Azoubel S, Queiroz KC, Peppelenbosch MP & Ferreira CV (2009) From immune response to cancer: a spot on the low molecular weight protein tyrosine phosphatase. Cell Mol Life Sci66, 11401153.
  • 145
    Mascarello A, Chiaradia LD, Vernal J, Villarino A, Guido RV, Perizzolo P, Poirier V, Wong D, Martins PG, Nunes RJ et al. (2010) Inhibition of Mycobacterium tuberculosis tyrosine phosphatase PtpA by synthetic chalcones: kinetics, molecular modeling, toxicity and effect on growth. Bioorg Med Chem18, 37833789.
  • 146
    Vega C, Chou S, Engel K, Harrell ME, Rajagopal L & Grundner C (2011) Structure and substrate recognition of the Staphylococcus aureus protein tyrosine phosphatase PtpA. J Mol Biol413, 2431.
  • 147
    Grundner C, Ng HL & Alber T (2005) Mycobacterium tuberculosis protein tyrosine phosphatase PtpB structure reveals a diverged fold and a buried active site. Structure (Camb)13, 16251634.
  • 148
    Grundner C, Perrin D, Hooft van Huijsduijnen R, Swinnen D, Gonzalez J, Gee CL, Wells TN & Alber T (2007) Structural basis for selective inhibition of Mycobacterium tuberculosis protein tyrosine phosphatase PtpB. Structure15, 499509.
  • 149
    Beresford N, Patel S, Armstrong J, Szoor B, Fordham-Skelton AP & Tabernero L (2007) MptpB, a virulence factor from Mycobacterium tuberculosis, exhibits triple-specificity phosphatase activity. Biochem J406, 1318.
  • 150
    Beresford NJ, Saville C, Bennett HJ, Roberts IS & Tabernero L (2010) A new family of phosphoinositide phosphatases in microorganisms: identification and biochemical analysis. BMC Genomics11, 457.
  • 151
    Krishna SS, Tautz L, Xu Q, McMullan D, Miller MD, Abdubek P, Ambing E, Astakhova T, Axelrod HL, Carlton D et al. (2007) Crystal structure of NMA1982 from Neisseria meningitidis at 1.5 angstroms resolution provides a structural scaffold for nonclassical, eukaryotic-like phosphatases. Proteins69, 415421.
  • 152
    Kim HS, Lee SJ, Yoon HJ, An DR, Kim do J, Kim SJ & Suh SW (2011) Crystal structures of YwqE from Bacillus subtilis and CpsB from Streptococcus pneumoniae, unique metal-dependent tyrosine phosphatases. J Struct Biol175, 442450.
  • 153
    Morona JK, Morona R & Paton JC (2006) Attachment of capsular polysaccharide to the cell wall of Streptococcus pneumoniae type 2 is required for invasive disease. Proc Natl Acad Sci USA103, 85058510.
  • 154
    Chu HM, Guo RT, Lin TW, Chou CC, Shr HL, Lai HL, Tang TY, Cheng KJ, Selinger BL & Wang AH (2004) Structures of Selenomonas ruminantium phytase in complex with persulfated phytate: DSP phytase fold and mechanism for sequential substrate hydrolysis. Structure12, 20152024.
  • 155
    Puhl AA, Gruninger RJ, Greiner R, Janzen TW, Mosimann SC & Selinger LB (2007) Kinetic and structural analysis of a bacterial protein tyrosine phosphatase-like myo-inositol polyphosphatase. Protein Sci16, 13681378.
  • 156
    Gruninger RJ, Selinger LB & Mosimann SC (2008) Effect of ionic strength and oxidation on the P-loop conformation of the protein tyrosine phosphatase-like phytase, PhyAsr. FEBS J275, 37833792.
  • 157
    Gruninger RJ, Selinger LB & Mosimann SC (2009) Structural analysis of a multifunctional, tandemly repeated inositol polyphosphatase. J Mol Biol392, 7586.
  • 158
    Mukhopadhyay R, Bisacchi D, Zhou Y, Armirotti A & Bordo D (2009) Structural characterization of the As/Sb reductase LmACR2 from Leishmania major. J Mol Biol386, 12291239.
  • 159
    Szoor B, Wilson J, McElhinney H, Tabernero L & Matthews KR (2006) Protein tyrosine phosphatase TbPTP1: a molecular switch controlling life cycle differentiation in trypanosomes. J Cell Biol175, 293303.
  • 160
    Szoor B, Ruberto I, Burchmore R & Matthews KR (2009) A novel phosphatase cascade regulates differentiation in Trypanosoma brucei via a glycosomal signaling pathway. Genes Dev24, 13061316.
  • 161
    Chou S, Jensen BC, Parsons M, Alber T & Grundner C (2010) The Trypanosoma brucei life cycle switch TbPTP1 is structurally conserved and dephosphorylates the nucleolar protein NOPP44/46. J Biol Chem285, 2207522081.
  • 162
    Liu G, Xin Z, Liang H, Abad-Zapatero C, Hajduk PJ, Janowick DA, Szczepankiewicz BG, Pei Z, Hutchins CW, Ballaron SJ et al. (2003) Selective protein tyrosine phosphatase 1B inhibitors: targeting the second phosphotyrosine binding site with non-carboxylic acid-containing ligands. J Med Chem46, 34373440.
  • 163
    Madhurantakam C, Rajakumara E, Mazumdar PA, Saha B, Mitra D, Wiker HG, Sankaranarayanan R & Das AK (2005) Crystal structure of low-molecular-weight protein tyrosine phosphatase from Mycobacterium tuberculosis at 1.9-A resolution. J Bacteriol187, 21752181.