• 1
    Jerums G, Panagiotopoulos S, Forbes JM, Osicka TM & Cooper ME (2003) Evolving concepts in advanced glycation, diabetic nephropathy and diabetic vascular disease. Arch Biochem Biophys 419, 5562.
  • 2
    Forbes JM, Soldatos G & Thomas MC (2005) Below the radar: advanced glycation end products that detour ‘around the side’. Clin Biochem Rev 26, 123134.
  • 3
    Zhang Q, Ames JM, Smith RD, Baynes JW & Metz TO (2009) A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: probing the pathogenesis of chronic disease. J Proteome Res 8, 754769.
  • 4
    Neeper M, Schmidt A-M, Brett J, Yan SD, Wang F, Pan Y-CE, Elliston K, Stern D & Shaw A (1992) Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 267, 1499815004.
  • 5
    Goh S & Cooper ME (2008) The role of advanced glycation end products in progression and complications of diabetes. J Clin Endocrinol Metab 93, 11431152.
  • 6
    Ahmed N & Thornalley PJ (2007) Advanced glycation endproducts: what is their relevance to diabetic complications? Diabetes Obes Metab 9, 233245.
  • 7
    McRobert EA, Gallicchio M, Jerums G, Cooper ME & Bach LA (2003) The amino terminal domains of ERM proteins bind advanced glycation endproducts: an interaction that may play a role in the development of diabetic complications. J Biol Chem 278, 2578325789.
  • 8
    McClatchey AI & Fehon RG (2009) Merlin and the ERM proteins – regulators of receptor distribution and signalling at the cell cortex. Trends Cell Biol 19, 198206.
  • 9
    Niggli V & Rossy J (2008) Ezrin/radixin/moesin: versatile controllers of signaling molecules and of the cortical cytoskeleton. Int J Biochem Cell Biol 40, 344349.
  • 10
    McRobert EA, Tikoo A, Cooper ME & Bach LA (2008) Localization of the ezrin binding epitope for advanced glycation endproducts. Int J Biochem Cell Biol 40, 15701580.
  • 11
    Bretscher A, Edwards K & Fehon RG (2002) ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 3, 586599.
  • 12
    Gallicchio MA, McRobert EA, Tikoo A, Cooper ME & Bach LA (2006) Advanced glycation end products inhibit tubulogenesis and migration of kidney epithelial cells in an ezrin-dependent manner. J Am Soc Nephrol 17, 414421.
  • 13
    Kaul SC, Kawai R, Nomura H, Mitsui Y, Reddel RR & Wadha R (1999) Identification of a 55-kDa ezrin-related protein that induces cytoskeletal changes and localizes to the nucleolus. Exp Cell Res 250, 5161.
  • 14
    Barret C, Roy C, Montcourrier P, Mangeat P & Niggli V (2000) Mutagenesis of the phosphatidyl 4,5-biphosphate (PIP2) binding site in the NH2-terminal domain of ezrin correlates with its altered cellular distribution. J Cell Biol 151, 10671080.
  • 15
    Yao X, Thibodeau A & Forte JG (1993) Ezrin–calpain 1 interactions in gastric parietal cells. Am J Physiol 265, C36C46.
  • 16
    Suzuki K, Hata S, Kawabata Y & Sorimachi H (2004) Structure, activation, and biology of calpain. Diabetes 53, S12S18.
  • 17
    Franco JS & Huttenlocher A (2005) Regulating cell migration: calpains make the cut. J Cell Sci 118, 38293838.
  • 18
    Shuster CB & Herman IM (1995) Indirect association of ezrin with F-actin: isoform specificity and calcium sensitivity. J Cell Biol 128, 837848.
  • 19
    Cortes P, Mendez M, Riser BL, Guerin CJ, Rodriguez-Barnero A, Hassett C & Yee J (2000) F-actin fiber distribution in glomerular cells: structural and functional implications. Kidney Int 58, 24522461.
  • 20
    Zhou X, Hurst RD, D T & Whiteside C (1995) High glucose alters actin assembly in glomerular mesangial and epithelial cells. Lab Invest 73, 372383.
  • 21
    Kim EK, Geroski DH, Holley GP, Urken SI & Edelhauser HF (1992) Corneal endothelial cytoskeletal changes in F-actin with aging, diabetes and after cytochalasin exposure. Am J Ophthalmol 114, 329335.
  • 22
    Oldfield MD, Bach LA, Forbes JM, Nikolic-Paterson D, McRobert EA, Thallas-Bonke V, Atkins RC, Osicka TM, Jerums G & Cooper ME (2001) Advanced glycation endproducts cause epithelial–myofibroblast transdifferentiation via the receptor for advanced glycation endproducts (RAGE). J Clin Invest 108, 18531863.
  • 23
    Gilbert RE & Cooper ME (1999) The tubulointerstitium in progressive diabetic kidney disease: more than an aftermath of glomerular injury. Kidney Int 56, 16271637.
  • 24
    Ostalska-Nowicka D, Zachwieja J, Nowicki N, Kaczmarek E, Siwinska A & Witt M (2006) Ezrin – a useful factor in the prognosis of nephrotic syndrome in children: an immunohistochemical approach. J Clin Pathol 59, 916920.
  • 25
    Pezzolesi MG, Poznik GD, Mychaleckyj JC, Paterson AD, Barati MT, Klein JB, Ng DP, Placha G, Canani LH, Bochenski J et al. (2009) Genome-wide association scan for diabetic nephropathy susceptibility genes in type 1 diabetes. Diabetes, 58, 14031410.
  • 26
    Lopez JP, Turner JR & Philipson LH (2010) Glucose-induced ERM protein activation and translocation regulates insulin secretion. Am J Physiol Endocrinol Metab 299, E772E785.
  • 27
    Koga M & Kasayama S (2010) Clinical impact of glycated albumin as another glycaemic control marker. Endocrine J 57, 751762.
  • 28
    Paroni R, Ceriotti F, Galanello R, Battista Leoni G, Panico A, Scurati E, Paleari R, Chemello L, Quaino L, Scaldaferri L et al. (2007) Performance characteristics and clinical utility of an enzymatic method for the measurement of glycated albumin in plasma. Clin Biochem 40, 13981405.
  • 29
    Rondeau P & Bourdon E (2011) The glycation of albumin: structural and functional impacts. Biochimie 93, 645658.
  • 30
    Hirokawa Y, Oda N, Cox NJ, Li X, Orho-Melander M, Hara M, Hinokio Y, Lindner TH, Mashima H, Schwarz PEH et al. (2000) Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet 26, 163175.
  • 31
    Harris F, Biswas S, Singh J, Dennison S & Phoenix DA (2006) Calpains and their multiple roles in diabetes mellitus. Ann N Y Acad Sci 1084, 452480.
  • 32
    Marshall C, Hitman GA, Partridge CJ, Clark A, Ma H, Shearer TR & Turner MD (2005) Evidence that an isoform of calpain-10 is a regulator of exocytosis in pancreatic β-cells. Mol Endocrinol 19, 213224.
  • 33
    Tompa P, Mucsi Z, Orosz G & Friedrich P (2002) Calpastatin subdomains A and C are activators of calpain. J Biol Chem 277, 90229026.
  • 34
    Stalker TJ, Gong Y & Scalia R (2005) The calcium-dependent protease calpain causes endothelial dysfunction in type 2 diabetes. Diabetes 54, 11321140.
  • 35
    Sreenan SK, Zhou Y-P, Otani K, Hansen PA, Currie KPM, Pan C-Y, Lee J-P, Ostrega DM, Pugh W, Horikawa Y et al. (2001) Calpains play a role in insulin secretion and action. Diabetes 50, 20132020.
  • 36
    Harwood SM, Allen DA, Raftery MJ & Yaqoob MM (2007) High glucose initiates calpain-induced necrosis before apoptosis in LLLC-PK1 cells. Kidney Int 71, 655663.
  • 37
    Dong Y, Wu Y, Wu M, Wang SC, Zhang J, Xie Z, Xu J, Song P, Wilson K, Zhao Z et al. (2009) Activation of protease calpain by oxidized and glycated LDL increases the degradation of endothelial nitric oxide synthase. J Cell Mol Med 13, 28992910.
  • 38
    Banoczi Z, Alexa A, Farkas A, Friedrich P & Hudecz F (2008) Novel cell-penetrating calpain substrate. Bioconjug Chem 19, 13751381.
  • 39
    Massry SG & Smorgorzewski M (1997) Role of elevated cystolic calcium in the pathogenesis of complications in diabetes mellitus. Miner Electrolyte Metab 23, 253260.
  • 40
    Jan CR, Chen CH, Wang SC & Kuo SY (2005) Effect of methylglyoxal on intracellular calcium levels and viability in renal tubular cells. Cell Signal 17, 847855.
  • 41
    Matihagela K & Taub M (2006) Involvement of EP1 and EP2 receptors in the regulation of the Na, K-ATPase by prostaglandins in MDCK cells. Prostaglandins Other Lipid Mediat 79, 101113.
  • 42
    Tompa P, Buzder-Lantos P, Tantos A, Farkas A, Szilagyi A, Banoczi Z, Hudecz F & Friedrich P (2004) On the sequential determinants of calpain cleavage. J Biol Chem 79, 2077520785.
  • 43
    Kishore R, Qin G, Luedemann C, Bord E, Hanley A, Silver M, Gavin M, Goukassain D & Losordo DW (2005) The cytoskeletal protein ezrin regulates EC proliferation and angiogenesis via TNF-α-induced transcriptional repression of cyclin A. J Clin Invest 115, 17851796.
  • 44
    Wang H, Guo Z, Wu F, Long F, Cao X, Liu B, Zhu Z & Yao X (2005) PKA-mediated protein phosphorylation protects ezrin from calpain I cleavage. Biochem Biophys Res Commun 333, 496501.
  • 45
    Sprague CR, Fraley TS, Jang HS, Lal S & Greenwood JA (2008) Phosphoinositide binding to the substrate regulates susceptibility to proteolysis by calpain. J Biol Chem 283, 92179223.
  • 46
    Fievet BT, Louvard D & Arpin M (2006) ERM proteins in epithelial cell organization and functions. Biochem Biophys Acta 1773, 653660.
  • 47
    Ruppelt A, Mosenden R, Gronholm M, Aandahl EM, Tobin D, Carlson CR, Abrahamsen H, Herberg FW, Carpen O & Tasken K (2007) Inhibition of T cell activation by cyclic adenosine 5′-monophosphate requires lipid raft targeting of protein kinase A type 1 by the A-kinase anchoring protein ezrin. J Immunol 179, 51595168.
  • 48
    Nakamura F, Huang K, Pestonjamasp E, Luna J & Furthmayr H (1999) Regulation of F-actin binding to platelet moesin in vitro by both phosphorylation of threonine 558 and phosphatidylinositides. Mol Biol Cell 10, 26692685.
  • 49
    Wakayama Y, Miura K & Mochizuki N (2011) EphrinA1–EphA2 signal induces compaction and polarization of MDCK kidney cells by inactivating ezrin through negative regulation of RhoA. J Biol Chem 268, 4424344253.
  • 50
    Batchelor CL, Woodward AM & Crouch DH (2004) Nuclear ERM (ezrin, radixin, moesin) proteins: regulation by cell density and nuclear import. Exp Cell Res 296, 208222.
  • 51
    Guo X, Wang L, Chen B, Li Q, Wang J, Zhao M, Zhu P, Huang X & Huang Q (2009) ERM protein moesin is phosphorylated by advanced glycation end products and modulates endothelial permeability. Am J Physiol Heart Circ Physiol 297, H238H246.
  • 52
    Li Q, Liu H, Du J, Chen B, Li Q, Guo X, Huang X & Huang Q (2011) Advanced glycation end products induce moesin phosphorylation in murine brain endothelium. Brain Res 1373, 715.
  • 53
    Berryman M, Franck Z & Bretscher A (1993) Ezrin is concentrated in the apical microvilli of a wide variety of epithelial cells whereas moesin is found primarily in endothelial cells. J Cell Sci 105, 10251043.
  • 54
    Ilani T, Khanna C, Zhou M, Veenstra TD & Bretscher A (2007) Immune synapse formation requires ZAP-70 recruitment by ezrin and CD43 removal by moesin. J Cell Biol 179, 733746.
  • 55
    Shaffer MH, Dupree RS, Zhu P, Saotome I, Schmidt RF, McClatchey AI, Freedman BD & Burkhardt JK (2009) Ezrin and moesin function together to promote T cell activation. J Immunol 182, 10211032.
  • 56
    Zhao H, Shiue H, Palkon S, Wang Y, Cullinan P, Burkhardt JK, Musch MW, Chang EB & Turner JR (2004) Ezrin regulates NHE3 translocation and activation after Na+–glucose cotransport. Proc Natl Acad Sci USA 101, 94859490.
  • 57
    Crepaldi T, Gautreau A, Comoglio PM, Louvard D & Arpin M (1997) Ezrin is an effector of HGF-mediated migration and morphogenesis in epithelial cells. J Cell Biol 138, 423434.
  • 58
    Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, Remuzzi G, Snapinn SM, Zhang Z, Shahinfar S et al. (2001) Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 345, 861869.
  • 59
    Kamal F, Yanakieva-Georgieva N, Piao H, Morioka T & Oite T (2010) Local delivery of angiotensin II receptor blockers into the kidney passively attenuates inflammatory reactions during the early phases of streptozotocin-induced diabetic nephropathy through inhibition of calpain activity. Nephron Exp Nephrol 115, e69e79.
  • 60
    Di Christofano C, Leopizzi M, Miraglia A, Sardella B, Moretti V, Ferrara A, Petrozza V & Della Rocca C (2010) Phosphorylated ezrin is located in the nucleus of the osteosarcoma cell. Mod Pathol 23, 10121020.
  • 61
    Noren NK, Niessen CM, Gumbiner BM & Burridge K (2001) Cadherin engagement regulates Rho family GTPases. J Biol Chem 276, 3330533308.