• 1
    Widmann C, Gibson S, Jarpe MB & Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev79, 143180.
  • 2
    Raman M, Chen W & Cobb MH (2007) Differential regulation and properties of MAPKs. Oncogene26, 31003112.
  • 3
    Wada T & Penninger JM (2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene23, 28382849.
  • 4
    Turjanski AG, Vaque JP & Gutkind JS (2007) MAP kinases and the control of nuclear events. Oncogene26, 32403253.
  • 5
    Kyriakis JM & Avruch J (2012) Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev92, 689737.
  • 6
    Rincon M & Davis RJ (2009) Regulation of the immune response by stress-activated protein kinases. Immunol Rev228, 212224.
  • 7
    Dhillon AS, Hagan S, Rath O & Kolch W (2007) MAP kinase signalling pathways in cancer. Oncogene26, 32793290.
  • 8
    Lawrence MC, Jivan A, Shao C, Duan L, Goad D, Zaganjor E, Osborne J, McGlynn K, Stippec S, Earnest S et al. (2008) The roles of MAPKs in disease. Cell Res18, 436442.
  • 9
    Marshall CJ (1994) MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr Opin Genet Dev4, 8289.
  • 10
    Cobb MH (1999) MAP kinase pathways. Prog Biophys Mol Biol71, 479500.
  • 11
    Coulombe P & Meloche S (2007) Atypical mitogen-activated protein kinases: structure, regulation and functions. Biochim Biophys Acta1773, 13761387.
  • 12
    Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell80, 179185.
  • 13
    Keyse SM (2000) Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Curr Opin Cell Biol12, 186192.
  • 14
    Patterson KI, Brummer T, O’Brien PM & Daly RJ (2009) Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem J418, 475489.
  • 15
    Dickinson RJ & Keyse SM (2006) Diverse physiological functions for dual-specificity MAP kinase phosphatases. J Cell Sci119, 46074615.
  • 16
    Owens DM & Keyse SM (2007) Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene26, 32033213.
  • 17
    Theodosiou A & Ashworth A (2002) MAP kinase phosphatases. Genome Biol3, 3009.
  • 18
    Camps M, Nichols A & Arkinstall S (2000) Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J14, 616.
  • 19
    Groom LA, Sneddon AA, Alessi DR, Dowd S & Keyse SM (1996) Differential regulation of the MAP, SAP and RK/p38 kinases by Pyst1, a novel cytosolic dual-specificity phosphatase. EMBO J15, 36213632.
  • 20
    Muda M, Theodosiou A, Rodrigues N, Boschert U, Camps M, Gillieron C, Davies K, Ashworth A & Arkinstall S (1996) The dual specificity phosphatases M3/6 and MKP-3 are highly selective for inactivation of distinct mitogen-activated protein kinases. J Biol Chem271, 2720527208.
  • 21
    Raingeaud J, Gupta S, Rogers JS, Dickens M, Han J, Ulevitch RJ & Davis RJ (1995) Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem270, 74207426.
  • 22
    Slack DN, Seternes OM, Gabrielsen M & Keyse SM (2001) Distinct binding determinants for ERK2/p38alpha and JNK map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1. J Biol Chem276, 1649116500.
  • 23
    Nichols A, Camps M, Gillieron C, Chabert C, Brunet A, Wilsbacher J, Cobb M, Pouyssegur J, Shaw JP & Arkinstall S (2000) Substrate recognition domains within extracellular signal-regulated kinase mediate binding and catalytic activation of mitogen-activated protein kinase phosphatase-3. J Biol Chem275, 2461324621.
  • 24
    Tanoue T, Adachi M, Moriguchi T & Nishida E (2000) A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat Cell Biol2, 110116.
  • 25
    Tanoue T, Yamamoto T & Nishida E (2002) Modular structure of a docking surface on MAPK phosphatases. J Biol Chem277, 2294222949.
  • 26
    Tanoue T, Maeda R, Adachi M & Nishida E (2001) Identification of a docking groove on ERK and p38 MAP kinases that regulates the specificity of docking interactions. EMBO J20, 466479.
  • 27
    Chang CI, Xu BE, Akella R, Cobb MH & Goldsmith EJ (2002) Crystal structures of MAP kinase p38 complexed to the docking sites on its nuclear substrate MEF2A and activator MKK3b. Mol Cell9, 12411249.
  • 28
    Liu S, Sun JP, Zhou B & Zhang ZY (2006) Structural basis of docking interactions between ERK2 and MAP kinase phosphatase 3. Proc Natl Acad Sci USA103, 53265331.
  • 29
    Bott CM, Thorneycroft SG & Marshall CJ (1994) The sevenmaker gain-of-function mutation in p42 MAP kinase leads to enhanced signalling and reduced sensitivity to dual specificity phosphatase action. FEBS Lett352, 201205.
  • 30
    Zhang YY, Wu JW & Wang ZX (2011) A distinct interaction mode revealed by the crystal structure of the kinase p38alpha with the MAPK binding domain of the phosphatase MKP5. Sci Signal4, ra88.
  • 31
    Chen P, Hutter D, Yang X, Gorospe M, Davis RJ & Liu Y (2001) Discordance between the binding affinity of mitogen-activated protein kinase subfamily members for MAP kinase phosphatase-2 and their ability to activate the phosphatase catalytically. J Biol Chem276, 2944029449.
  • 32
    Camps M, Nichols A, Gillieron C, Antonsson B, Muda M, Chabert C, Boschert U & Arkinstall S (1998) Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase. Science280, 12621265.
  • 33
    Stewart AE, Dowd S, Keyse SM & McDonald NQ (1999) Crystal structure of the MAPK phosphatase Pyst1 catalytic domain and implications for regulated activation. Nat Struct Biol6, 174181.
  • 34
    Rigas JD, Hoff RH, Rice AE, Hengge AC & Denu JM (2001) Transition state analysis and requirement of Asp-262 general acid/base catalyst for full activation of dual-specificity phosphatase MKP3 by extracellular regulated kinase. Biochemistry40, 43984406.
  • 35
    Zhou B & Zhang ZY (1999) Mechanism of mitogen-activated protein kinase phosphatase-3 activation by ERK2. J Biol Chem274, 3552635534.
  • 36
    Zhang Q, Muller M, Chen CH, Zeng L, Farooq A & Zhou MM (2005) New insights into the catalytic activation of the MAPK phosphatase PAC-1 induced by its substrate MAPK ERK2 binding. J Mol Biol354, 777788.
  • 37
    Mandl M, Slack DN & Keyse SM (2005) Specific inactivation and nuclear anchoring of extracellular signal-regulated kinase 2 by the inducible dual-specificity protein phosphatase DUSP5. Mol Cell Biol25, 18301845.
  • 38
    Tanoue T, Moriguchi T & Nishida E (1999) Molecular cloning and characterization of a novel dual specificity phosphatase, MKP-5. J Biol Chem274, 1994919956.
  • 39
    Jeong DG, Yoon TS, Kim JH, Shim MY, Jung SK, Son JH, Ryu SE & Kim SJ (2006) Crystal structure of the catalytic domain of human MAP kinase phosphatase 5: structural insight into constitutively active phosphatase. J Mol Biol360, 946955.
  • 40
    Jeong DG, Cho YH, Yoon TS, Kim JH, Ryu SE & Kim SJ (2007) Crystal structure of the catalytic domain of human DUSP5, a dual specificity MAP kinase protein phosphatase. Proteins66, 253258.
  • 41
    Venema RC, Venema VJ, Eaton DC & Marrero MB (1998) Angiotensin II-induced tyrosine phosphorylation of signal transducers and activators of transcription 1 is regulated by Janus-activated kinase 2 and Fyn kinases and mitogen-activated protein kinase phosphatase 1. J Biol Chem273, 3079530800.
  • 42
    ten Hoeve J, de Jesus Ibarra-Sanchez M, Fu Y, Zhu W, Tremblay M, David M & Shuai K (2002) Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol Cell Biol22, 56625668.
  • 43
    Kinney CM, Chandrasekharan UM, Yang L, Shen J, Kinter M, McDermott MS & DiCorleto PE (2009) Histone H3 as a novel substrate for MAP kinase phosphatase-1. Am J Physiol Cell Physiol296, C242C249.
  • 44
    Staples CJ, Owens DM, Maier JV, Cato AC & Keyse SM (2010) Crosstalk between the p38alpha and JNK MAPK pathways mediated by MAP kinase phosphatase-1 determines cellular sensitivity to UV radiation. J Biol Chem285, 2592825940.
  • 45
    Xu H, Yang Q, Shen M, Huang X, Dembski M, Gimeno R, Tartaglia LA, Kapeller R & Wu Z (2005) Dual specificity MAPK phosphatase 3 activates PEPCK gene transcription and increases gluconeogenesis in rat hepatoma cells. J Biol Chem280, 3601336018.
  • 46
    Wu Z, Jiao P, Huang X, Feng B, Feng Y, Yang S, Hwang P, Du J, Nie Y, Xiao G et al. (2010) MAPK phosphatase-3 promotes hepatic gluconeogenesis through dephosphorylation of forkhead box O1 in mice. J Clin Invest120, 39013911.
  • 47
    Zhang YY, Wu JW & Wang ZX (2011) Mitogen-activated protein kinase (MAPK) phosphatase 3-mediated crosstalk between MAPKs ERK2 and p38alpha. J Biol Chem286, 1615016162.
  • 48
    Willoughby EA & Collins MK (2005) Dynamic interaction between the dual specificity phosphatase MKP7 and the JNK3 scaffold protein beta-arrestin 2. J Biol Chem280, 2565125658.
  • 49
    Willoughby EA, Perkins GR, Collins MK & Whitmarsh AJ (2003) The JNK-interacting protein-1 scaffold protein targets MAPK phosphatase-7 to dephosphorylate JNK. J Biol Chem278, 1073110736.
  • 50
    Karlsson M, Mathers J, Dickinson RJ, Mandl M & Keyse SM (2004) Both nuclear-cytoplasmic shuttling of the dual specificity phosphatase MKP-3 and its ability to anchor MAP kinase in the cytoplasm are mediated by a conserved nuclear export signal. J Biol Chem279, 4188241891.
  • 51
    Wu JJ, Zhang L & Bennett AM (2005) The noncatalytic amino terminus of mitogen-activated protein kinase phosphatase 1 directs nuclear targeting and serum response element transcriptional regulation. Mol Cell Biol25, 47924803.
  • 52
    Masuda K, Shima H, Watanabe M & Kikuchi K (2001) MKP-7, a novel mitogen-activated protein kinase phosphatase, functions as a shuttle protein. J Biol Chem276, 3900239011.
  • 53
    Zhou B, Wang ZX, Zhao Y, Brautigan DL & Zhang ZY (2002) The specificity of extracellular signal-regulated kinase 2 dephosphorylation by protein phosphatases. J Biol Chem277, 3181831825.
  • 54
    Finch AR, Caunt CJ, Perrett RM, Tsaneva-Atanasova K & McArdle CA (2012) Dual specificity phosphatases 10 and 16 are positive regulators of EGF-stimulated ERK activity: indirect regulation of ERK signals by JNK/p38 selective MAPK phosphatases. Cell Signal24, 10021011.
  • 55
    Alessi DR, Gomez N, Moorhead G, Lewis T, Keyse SM & Cohen P (1995) Inactivation of p42 MAP kinase by protein phosphatase 2A and a protein tyrosine phosphatase, but not CL100, in various cell lines. Curr Biol5, 283295.
  • 56
    Junttila MR, Li SP & Westermarck J (2008) Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J22, 954965.
  • 57
    Kholodenko BN, Hancock JF & Kolch W (2010) Signalling ballet in space and time. Nat Rev Mol Cell Biol11, 414426.
  • 58
    Zhou B, Wu L, Shen K, Zhang J, Lawrence DS & Zhang ZY (2001) Multiple regions of MAP kinase phosphatase 3 are involved in its recognition and activation by ERK2. J Biol Chem276, 65066515.
  • 59
    Zhou B, Zhang J, Liu S, Reddy S, Wang F & Zhang ZY (2006) Mapping ERK2–MKP3 binding interfaces by hydrogen/deuterium exchange mass spectrometry. J Biol Chem281, 3883438844.
  • 60
    Burkhard KA, Chen F & Shapiro P (2011) Quantitative analysis of ERK2 interactions with substrate proteins: roles for kinase docking domains and activity in determining binding affinity. J Biol Chem286, 24772485.
  • 61
    White RJ & Sharrocks AD (2010) Coordinated control of the gene expression machinery. Trends Genet26, 214220.
  • 62
    Yang SH, Sharrocks AD & Whitmarsh AJ (2003) Transcriptional regulation by the MAP kinase signaling cascades. Gene320, 321.
  • 63
    Lawrence MC, Shao C, McGlynn K, Naziruddin B, Levy MF & Cobb MH (2009) Multiple chromatin-bound protein kinases assemble factors that regulate insulin gene transcription. Proc Natl Acad Sci USA106, 2218122186.
  • 64
    Proft M, Mas G, de Nadal E, Vendrell A, Noriega N, Struhl K & Posas F (2006) The stress-activated Hog1 kinase is a selective transcriptional elongation factor for genes responding to osmotic stress. Mol Cell23, 241250.
  • 65
    Rauch J, Volinsky N, Romano D & Kolch W (2011) The secret life of kinases: functions beyond catalysis. Cell Commun Signal9, 23.
  • 66
    Rodriguez J & Crespo P (2011) Working without kinase activity: phosphotransfer-independent functions of extracellular signal-regulated kinases. Sci Signal4, re3.
  • 67
    Caunt CJ, Armstrong SP, Rivers CA, Norman MR & McArdle CA (2008) Spatiotemporal regulation of ERK2 by dual specificity phosphatases. J Biol Chem283, 2661226623.
  • 68
    Cagnol S & Rivard N (2012) Oncogenic KRAS and BRAF activation of the MEK/ERK signaling pathway promotes expression of dual-specificity phosphatase 4 (DUSP4/MKP2) resulting in nuclear ERK1/2 inhibition. Oncogene, doi:10.1038/onc.2012.88.
  • 69
    Adachi M, Fukuda M & Nishida E (2000) Nuclear export of MAP kinase (ERK) involves a MAP kinase kinase (MEK)-dependent active transport mechanism. J Cell Biol148, 849856.
  • 70
    Fukuda M, Gotoh I, Adachi M, Gotoh Y & Nishida E (1997) A novel regulatory mechanism in the mitogen-activated protein (MAP) kinase cascade. Role of nuclear export signal of MAP kinase kinase. J Biol Chem272, 3264232648.
  • 71
    Caunt CJ & McArdle CA (2010) Stimulus-induced uncoupling of extracellular signal-regulated kinase phosphorylation from nuclear localization is dependent on docking domain interactions. J Cell Sci123, 43104320.
  • 72
    Robinson FL, Whitehurst AW, Raman M & Cobb MH (2002) Identification of novel point mutations in ERK2 that selectively disrupt binding to MEK1. J Biol Chem277, 1484414852.
  • 73
    Tarrega C, Rios P, Cejudo-Marin R, Blanco-Aparicio C, van den Berk L, Schepens J, Hendriks W, Tabernero L & Pulido R (2005) ERK2 shows a restrictive and locally selective mechanism of recognition by its tyrosine phosphatase inactivators not shared by its activator MEK1. J Biol Chem280, 3788537894.
  • 74
    Volmat V, Camps M, Arkinstall S, Pouyssegur J & Lenormand P (2001) The nucleus, a site for signal termination by sequestration and inactivation of p42/p44 MAP kinases. J Cell Sci114, 34333443.
  • 75
    Lenorman P, Brondello JM, Brunet A & Pouyssegur J (1998) Growth factor-induced p42/p44 MAPK nuclear translocation and retention requires both MAPK activation and neosynthesis of nuclear anchoring proteins. J Cell Biol142, 625633.
  • 76
    Caunt CJ, Rivers CA, Conway-Campbell BL, Norman MR & McArdle CA (2008) Epidermal growth factor receptor and protein kinase C signaling to ERK2: spatiotemporal regulation of ERK2 by dual specificity phosphatases. J Biol Chem283, 62416252.
  • 77
    Casar B, Rodriguez J, Gibor G, Seger R & Crespo P (2012) Mxi2 sustains ERK1/2 phosphorylation in the nucleus by preventing ERK1/2 binding to phosphatases. Biochem J441, 571578.
  • 78
    Ekerot M, Stavridis MP, Delavaine L, Mitchell MP, Staples C, Owens DM, Keenan ID, Dickinson RJ, Storey KG & Keyse SM (2008) Negative-feedback regulation of FGF signalling by DUSP6/MKP-3 is driven by ERK1/2 and mediated by Ets factor binding to a conserved site within the DUSP6/MKP-3 gene promoter. Biochem J412, 287298.
  • 79
    Kucharska A, Rushworth LK, Staples C, Morrice NA & Keyse SM (2009) Regulation of the inducible nuclear dual-specificity phosphatase DUSP5 by ERK MAPK. Cell Signal21, 17941805.
  • 80
    Avraham R & Yarden Y (2011) Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat Rev Mol Cell Biol12, 104117.
  • 81
    Amit I, Citri A, Shay T, Lu Y, Katz M, Zhang F, Tarcic G, Siwak D, Lahad J, Jacob-Hirsch J et al. (2007) A module of negative feedback regulators defines growth factor signaling. Nat Genet39, 503512.
  • 82
    Nunes-Xavier CE, Tarrega C, Cejudo-Marin R, Frijhoff J, Sandin A, Ostman A & Pulido R (2010) Differential up-regulation of MAP kinase phosphatases MKP3/DUSP6 and DUSP5 by Ets2 and c-Jun converge in the control of the growth arrest versus proliferation response of MCF-7 breast cancer cells to phorbol ester. J Biol Chem285, 2641726430.
  • 83
    Bhalla US, Ram PT & Iyengar R (2002) MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science297, 10181023.
  • 84
    Camps M, Chabert C, Muda M, Boschert U, Gillieron C & Arkinstall S (1998) Induction of the mitogen-activated protein kinase phosphatase MKP3 by nerve growth factor in differentiating PC12. FEBS Lett425, 271276.
  • 85
    Ramesh S, Qi XJ, Wildey GM, Robinson J, Molkentin J, Letterio J & Howe PH (2008) TGF beta-mediated BIM expression and apoptosis are regulated through SMAD3-dependent expression of the MAPK phosphatase MKP2. EMBO Rep9, 990997.
  • 86
    Li Z, Fei T, Zhang J, Zhu G, Wang L, Lu D, Chi X, Teng Y, Hou N, Yang X et al. (2012) BMP4 Signaling Acts via dual-specificity phosphatase 9 to control ERK activity in mouse embryonic stem cells. Cell Stem Cell10, 171182.
  • 87
    Chen JY, Lin JR, Cimprich KA & Meyer T (2012) A two-dimensional ERK–AKT signaling code for an NGF-triggered cell-fate decision. Mol Cell45, 196209.
  • 88
    Brondello JM, Brunet A, Pouyssegur J & McKenzie FR (1997) The dual specificity mitogen-activated protein kinase phosphatase-1 and -2 are induced by the p42/p44MAPK cascade. J Biol Chem272, 13681376.
  • 89
    Cook SJ, Beltman J, Cadwallader KA, McMahon M & McCormick F (1997) Regulation of mitogen-activated protein kinase phosphatase-1 expression by extracellular signal-related kinase-dependent and Ca2+-dependent signal pathways in Rat-1 cells. J Biol Chem272, 1330913319.
  • 90
    Li J, Gorospe M, Hutter D, Barnes J, Keyse SM & Liu Y (2001) Transcriptional induction of MKP-1 in response to stress is associated with histone H3 phosphorylation–acetylation. Mol Cell Biol21, 82138224.
  • 91
    Jeanneteau F, Deinhardt K, Miyoshi G, Bennett AM & Chao MV (2010) The MAP kinase phosphatase MKP-1 regulates BDNF-induced axon branching. Nat Neurosci13, 13731379.
  • 92
    Wu W, Chaudhuri S, Brickley DR, Pang D, Karrison T & Conzen SD (2004) Microarray analysis reveals glucocorticoid-regulated survival genes that are associated with inhibition of apoptosis in breast epithelial cells. Cancer Res64, 17571764.
  • 93
    Bhattacharyya S, Brown DE, Brewer JA, Vogt SK & Muglia LJ (2007) Macrophage glucocorticoid receptors regulate Toll-like receptor 4-mediated inflammatory responses by selective inhibition of p38 MAP kinase. Blood109, 43134319.
  • 94
    Perdiguero E, Sousa-Victor P, Ruiz-Bonilla V, Jardi M, Caelles C, Serrano AL & Munoz-Canoves P (2011) p38/MKP-1-regulated AKT coordinates macrophage transitions and resolution of inflammation during tissue repair. J Cell Biol195, 307322.
  • 95
    Melhem A, Yamada SD, Fleming GF, Delgado B, Brickley DR, Wu W, Kocherginsky M & Conzen SD (2009) Administration of glucocorticoids to ovarian cancer patients is associated with expression of the anti-apoptotic genes SGK1 and MKP1/DUSP1 in ovarian tissues. Clin Cancer Res15, 31963204.
  • 96
    Wu W, Pew T, Zou M, Pang D & Conzen SD (2005) Glucocorticoid receptor-induced MAPK phosphatase-1 (MKP-1) expression inhibits paclitaxel-associated MAPK activation and contributes to breast cancer cell survival. J Biol Chem280, 41174124.
  • 97
    Keyse SM (2008) Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer Metastasis Rev27, 253261.
  • 98
    Brondello JM, Pouyssegur J & McKenzie FR (1999) Reduced MAP kinase phosphatase-1 degradation after p42/p44MAPK-dependent phosphorylation. Science286, 25142517.
  • 99
    Lin YW, Chuang SM & Yang JL (2003) ERK1/2 achieves sustained activation by stimulating MAPK phosphatase-1 degradation via the ubiquitin–proteasome pathway. J Biol Chem278, 2153421541.
  • 100
    Lin YW & Yang JL (2006) Cooperation of ERK and SCFSkp2 for MKP-1 destruction provides a positive feedback regulation of proliferating signaling. J Biol Chem281, 915926.
  • 101
    Marchetti S, Gimond C, Chambard JC, Touboul T, Roux D, Pouyssegur J & Pages G (2005) Extracellular signal-regulated kinases phosphorylate mitogen-activated protein kinase phosphatase 3/DUSP6 at serines 159 and 197, two sites critical for its proteasomal degradation. Mol Cell Biol25, 854864.
  • 102
    Bermudez O, Marchetti S, Pages G & Gimond C (2008) Post-translational regulation of the ERK phosphatase DUSP6/MKP3 by the mTOR pathway. Oncogene27, 36853691.
  • 103
    Cejudo-Marin R, Tarrega C, Nunes-Xavier CE & Pulido R (2012) Caspase-3 cleavage of DUSP6/MKP3 at the interdomain region generates active MKP3 fragments that regulate ERK1/2 subcellular localization and function. J Mol Biol420, 128138.
  • 104
    Tanoue T, Yamamoto T, Maeda R & Nishida E (2001) A novel MAPK phosphatase MKP-7 acts preferentially on JNK/SAPK and p38 alpha and beta MAPKs. J Biol Chem276, 2662926639.
  • 105
    Masuda K, Shima H, Katagiri C & Kikuchi K (2003) Activation of ERK induces phosphorylation of MAPK phosphatase-7, a JNK specific phosphatase, at Ser-446. J Biol Chem278, 3244832456.
  • 106
    Katagiri C, Masuda K, Urano T, Yamashita K, Araki Y, Kikuchi K & Shima H (2005) Phosphorylation of Ser-446 determines stability of MKP-7. J Biol Chem280, 1471614722.
  • 107
    Masuda K, Katagiri C, Nomura M, Sato M, Kakumoto K, Akagi T, Kikuchi K, Tanuma N & Shima H (2010) MKP-7, a JNK phosphatase, blocks ERK-dependent gene activation by anchoring phosphorylated ERK in the cytoplasm. Biochem Biophys Res Commun393, 201206.
  • 108
    Cao W, Bao C, Padalko E & Lowenstein CJ (2008) Acetylation of mitogen-activated protein kinase phosphatase-1 inhibits Toll-like receptor signaling. J Exp Med205, 14911503.
  • 109
    Kim KH, An DR, Song J, Yoon JY, Kim HS, Yoon HJ, Im HN, Kim J, Kim DJ, Lee SJ et al. (2012) Mycobacterium tuberculosis Eis protein initiates suppression of host immune responses by acetylation of DUSP16/MKP-7. Proc Natl Acad Sci USA109, 77297734.
  • 110
    Dickinson RJ, Delavaine L, Cejudo-Marin R, Stewart G, Staples CJ, Didmon MP, Trinidad AG, Alonso A, Pulido R & Keyse SM (2011) Phosphorylation of the kinase interaction motif in mitogen-activated protein (MAP) kinase phosphatase-4 mediates crosstalk between protein kinase A and MAP kinase signaling pathways. J Biol Chem286, 3801838026.
  • 111
    Jeffrey KL, Camps M, Rommel C & Mackay CR (2007) Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses. Nat Rev Drug Discov6, 391403.
  • 112
    Christie GR, Williams DJ, Macisaac F, Dickinson RJ, Rosewell I & Keyse SM (2005) The dual-specificity protein phosphatase DUSP9/MKP-4 is essential for placental function but is not required for normal embryonic development. Mol Cell Biol25, 83238333.
  • 113
    Emanuelli B, Eberle D, Suzuki R & Kahn CR (2008) Overexpression of the dual-specificity phosphatase MKP-4/DUSP-9 protects against stress-induced insulin resistance. Proc Natl Acad Sci USA105, 35453550.
  • 114
    Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, Zeggini E, Huth C, Aulchenko YS, Thorleifsson G et al. (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet42, 579589.
  • 115
    Xu H, Dembski M, Yang Q, Yang D, Moriarty A, Tayber O, Chen H, Kapeller R & Tartaglia LA (2003) Dual specificity mitogen-activated protein (MAP) kinase phosphatase-4 plays a potential role in insulin resistance. J Biol Chem278, 3018730192.
  • 116
    Dry JR, Pavey S, Pratilas CA, Harbron C, Runswick S, Hodgson D, Chresta C, McCormack R, Byrne N, Cockerill M et al. (2010) Transcriptional pathway signatures predict MEK addiction and response to selumetinib (AZD6244). Cancer Res70, 22642273.
  • 117
    Pratilas CA & Solit DB (2010) Targeting the mitogen-activated protein kinase pathway: physiological feedback and drug response. Clin Cancer Res16, 33293334.
  • 118
    Pratilas CA, Hanrahan AJ, Halilovic E, Persaud Y, Soh J, Chitale D, Shigematsu H, Yamamoto H, Sawai A, Janakiraman M et al. (2008) Genetic predictors of MEK dependence in non-small cell lung cancer. Cancer Res68, 93759383.
  • 119
    Sanchez-Perez I, Martinez-Gomariz M, Williams D, Keyse SM & Perona R (2000) CL100/MKP-1 modulates JNK activation and apoptosis in response to cisplatin. Oncogene19, 51425152.
  • 120
    Small GW, Shi YY, Higgins LS & Orlowski RZ (2007) Mitogen-activated protein kinase phosphatase-1 is a mediator of breast cancer chemoresistance. Cancer Res67, 44594466.
  • 121
    Wang J, Zhou JY & Wu GS (2007) ERK-dependent MKP-1-mediated cisplatin resistance in human ovarian cancer cells. Cancer Res67, 1193311941.
  • 122
    Wang Z, Xu J, Zhou JY, Liu Y & Wu GS (2006) Mitogen-activated protein kinase phosphatase-1 is required for cisplatin resistance. Cancer Res66, 88708877.
  • 123
    Balko JM, Cook RS, Vaught DB, Kuba MG, Miller TW, Bhola NE, Sanders ME, Granja-Ingram NM, Smith JJ, Meszoely IM et al. (2012) Profiling of residual breast cancers after neoadjuvant chemotherapy identifies DUSP4 deficiency as a mechanism of drug resistance. Nat Med18, 10521059.
  • 124
    Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ, Barford D et al. (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell116, 855867.
  • 125
    Pratilas CA, Taylor BS, Ye Q, Viale A, Sander C, Solit DB & Rosen N (2009) (V600E)BRAF is associated with disabled feedback inhibition of RAF–MEK signaling and elevated transcriptional output of the pathway. Proc Natl Acad Sci USA106, 45194524.
  • 126
    Friday BB, Yu C, Dy GK, Smith PD, Wang L, Thibodeau SN & Adjei AA (2008) BRAF V600E disrupts AZD6244-induced abrogation of negative feedback pathways between extracellular signal-regulated kinase and Raf proteins. Cancer Res68, 61456153.
  • 127
    Ritt DA, Monson DM, Specht SI & Morrison DK (2010) Impact of feedback phosphorylation and Raf heterodimerization on normal and mutant B-Raf signaling. Mol Cell Biol30, 806819.
  • 128
    Little AS, Balmanno K, Sale MJ, Newman S, Dry JR, Hampson M, Edwards PA, Smith PD & Cook SJ (2011) Amplification of the driving oncogene, KRAS or BRAF, underpins acquired resistance to MEK1/2 inhibitors in colorectal cancer cells. Sci Signal4, ra17.
  • 129
    Kuilman T, Michaloglou C, Mooi WJ & Peeper DS (2010) The essence of senescence. Genes Dev24, 24632479.
  • 130
    Michaloglou C, Vredeveld LC, Mooi WJ & Peeper DS (2008) BRAF(E600) in benign and malignant human tumours. Oncogene27, 877895.
  • 131
    Woods D, Parry D, Cherwinski H, Bosch E, Lees E & McMahon M (1997) Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol Cell Biol17, 55985611.
  • 132
    Zhu J, Woods D, McMahon M & Bishop JM (1998) Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev12, 29973007.
  • 133
    Sarma U & Ghosh I (2012) Different designs of kinase-phosphatase interactions and phosphatase sequestration shapes the robustness and signal flow in the MAPK cascade. BMC Syst Biol6, 82.
  • 134
    Akella R, Moon TM & Goldsmith EJ (2008) Unique MAP Kinase binding sites. Biochim Biophys Acta1784, 4855.