• 1
    Hunter T (2009) Tyrosine phosphorylation: thirty years and counting. Curr Opin Cell Biol21, 140146.
  • 2
    Tonks NK & Neel BG (2001) Combinatorial control of the specificity of protein tyrosine phosphatases. Curr Opin Cell Biol13, 182195.
  • 3
    Zhang ZY (2001) Protein tyrosine phosphatases: prospects for therapeutics. Curr Opin Chem Biol5, 416423.
  • 4
    Arena S, Benvenuti S & Bardelli A (2005) Genetic analysis of the kinome and phosphatome in cancer. Cell Mol Life Sci62, 20922099.
  • 5
    Ostman A, Hellberg C & Bohmer FD (2006) Protein-tyrosine phosphatases and cancer. Nat Rev Cancer6, 307320.
  • 6
    Ventura JJ & Nebreda AR (2006) Protein kinases and phosphatases as therapeutic targets in cancer. Clin Transl Oncol8, 153160.
  • 7
    Julien SG, Dubé N, Hardy S & Tremblay ML (2011) Inside the human cancer tyrosine phosphatome. Nat Rev Cancer11, 3549.
  • 8
    Blume-Jensen P & Hunter T (2001) Oncogenic kinase signaling. Nature411, 355365.
  • 9
    Krause DS & Van Etten RA (2005) Tyrosine kinases as targets for cancer therapy. N Engl J Med353, 172187.
  • 10
    Jänne PA, Gray N & Settleman J (2009) Factors underlying sensitivity of cancers to small-molecule kinase inhibitors. Nat Rev Drug Discov8, 709723.
  • 11
    Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J & Mustelin T (2004) Protein tyrosine phosphatases in the human genome. Cell117, 699711.
  • 12
    Barr AJ, Ugochukwu E, Lee WH, King ON, Filippakopoulos P, Alfano I, Savitsky P, Burgess-Brown NA, Muller S & Knapp S (2009) Large-scale structural analysis of the classical human protein tyrosine phosphatome. Cell136, 352363.
  • 13
    Zhang ZY (2003) Mechanistic studies on protein tyrosine phosphatases. Prog Nucleic Acid Res Mol Biol73, 171220.
  • 14
    Tonks NK (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol7, 833846.
  • 15
    Simoncic PD, McGlade CJ & Tremblay ML (2006) PTP1B and TC-PTP: novel roles in immune-cell signaling. Can J Physiol Pharmacol84, 667675.
  • 16
    Elchelby M, Payette P, Michaliszyn E, Cromlish W, Collins S, Lee Loy A, Normandin D, Cheng A, Himms-Hagen J, Chan CC et al. (1999) Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science, 283, 15441548.
  • 17
    Klaman LD, Boss Q, Peroni OD, Kim JK, Martino JL, Zabolotny JM, Moghal N, Lubkin M, Kim YB, Sharpe AH et al. (2000) Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol20, 54795489.
  • 18
    Neel BG, Gu H & Pao L (2003) The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci28, 284293.
  • 19
    Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H, van der Burgt L, Crosby AH, Ion A, Jeffery S et al. (2001) Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet29, 465468.
  • 20
    Tartaglia M, Niemeyer CM, Fragale A, Song X, Buechner J, Jung A, Hahlen K, Hasle H, Licht JD & Gelb BD (2003) Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet34, 148150.
  • 21
    Bentires-Alj M, Paez JG, David FS, Keilhack H, Halmos B, Naoki K, Maris JM, Richardson A, Bardelli A, Sugarbaker DJ et al. (2004) Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res64, 88168820.
  • 22
    Smukste I & Stockwell BR (2005) Advances in chemical genetics. Annu Rev Genomics Hum Genet6, 261286.
  • 23
    Tjernberg A, Hallén D, Schultz J, James S, Benkestock K, Byström S & Weigelt J (2004) Mechanism of action of pyridazine analogues on protein tyrosine phosphatase 1B (PTP1B). Bioorg Med Chem Lett14, 891895.
  • 24
    Guertin KR, Setti L, Qi L, Dunsdon RM, Dymock BW, Jones PS, Overton H, Taylor M, Williams G, Sergi JA et al. (2003) Identification of a novel class of orally active pyrimido[5,4-3][1,2,4]triazine-5,7-diamine-based hypoglycemic agents with protein tyrosine phosphatase inhibitory activity. Bioorg Med Chem Lett13, 28952898.
  • 25
    Wang Q, Dubé D, Friesen RW, LeRiche TG, Bateman KP, Trimble L, Sanghara J, Pollex R, Ramachandran C, Gresser MJ et al. (2004) Catalytic inactivation of protein tyrosine phosphatase CD45 and protein tyrosine phosphatase 1B by polyaromatic quinones. Biochemistry43, 42944303.
  • 26
    Bova MP, Mattson MN, Vasile S, Tam D, Holsinger L, Bremer M, Hui T, McMahon G, Rice A & Fukuto JM (2004) The oxidative mechanism of action of ortho-quinone inhibitors of protein-tyrosine phosphatase alpha is mediated by hydrogen peroxide. Arch Biochem Biophys429, 3041.
  • 27
    Blaskovich MA (2009) Drug discovery and protein tyrosine phosphatases. Curr Med Chem16, 20952176.
  • 28
    Combs AP (2010) Recent advances in the discovery of competitive protein tyrosine phosphatase 1B inhibitors for the treatment of diabetes, obesity, and cancer. J Med Chem53, 23332344.
  • 29
    Barr AJ (2010) Protein tyrosine phosphatases as drug targets: strategies and challenges of inhibitor development. Future Med Chem2, 15631576.
  • 30
    Scott LM, Lawrence HR, Sebti SM, Lawrence NJ & Wu J (2010) Targeting protein tyrosine phosphatases for anticancer drug discovery. Curr Pharm Des16, 18431862.
  • 31
    Puius YA, Zhao Y, Sullivan M, Lawrence DS, Almo SC & Zhang ZY (1997) Identification of a second aryl phosphate-binding site in protein-tyrosine phosphatase 1B: a paradigm for inhibitor design. Proc Natl Acad Sci USA94, 1342013425.
  • 32
    Zhang ZY (2002) Protein tyrosine phosphatases: structure and function, substrate specificity, and inhibitor development. Annu Rev Pharmacol Toxicol42, 209234.
  • 33
    He Y, Zeng LF, Yu ZH, He R, Liu S & Zhang ZY (2012) Bicyclic benzofuran and indole-based salicylic acids as protein tyrosine phosphatase inhibitors. Bioorg Med Chem20, 19401946.
  • 34
    Tonks NK (2003) PTP1B: from the sidelines to the front lines!FEBS Lett546, 140148.
  • 35
    Lessard L, Stuible M & Tremblay ML (2010) The two faces of PTP1B in cancer. Biochim Biophys Acta1804, 613619.
  • 36
    Dubé N & Tremblay ML (2004) Beyond the metabolic function of PTP1B. Cell Cycle3, 550553.
  • 37
    Shen K, Keng YF, Wu L, Guo XL, Lawrence DS & Zhang ZY (2001) Acquisition of a specific and potent PTP1B inhibitor from a novel combinatorial library and screening procedure. J Biol Chem276, 4731147319.
  • 38
    Sun JP, Fedorov AA, Lee SY, Guo XL, Shen K, Lawrence DS, Almo SC & Zhang ZY (2003) Crystal structure of PTP1B in complex with a potent and selective bidentate inhibitor. J Biol Chem278, 1240612414.
  • 39
    Xie L, Lee SY, Andersen JN, Waters S, Shen K, Guo XL, Moller NPH, Olefsky JM, Lawrence DS & Zhang ZY (2003) Cellular effects of small molecule PTP1B inhibitors on insulin signalling. Biochemistry42, 1279212804.
  • 40
    Lee SY, Liang F, Guo XL, Xie L, Cahill SM, Blumenstein M, Yang H, Lawrence DS & Zhang ZY (2005) Design, construction, and intracellular activation of an intramolecularly self-silenced signal transduction inhibitor. Angew Chem Int Ed44, 42424244.
  • 41
    Boutselis IG, Yu X, Zhang ZY & Borch R (2007) Synthesis and cell-based activity of a potent and selective PTP1B inhibitor prodrug. J Med Chem50, 856864.
  • 42
    Lau CK, Bayly CI, Gauthier JY, Li CS, Therien M, Asante-Appiah E, Cromlish W, Boie Y, Forghani F, Desmarais S et al. (2004) Structure based design of a series of potent and selective non peptidic PTP-1B inhibitors. Bioorg Med Chem Lett14, 10431048.
  • 43
    Combs AP, Zhu WY, Crawley ML, Glass B, Polam P, Sparks RB, Modi D, Takvorian A, McLaughlin E, Yue EW et al. (2006) Potent benzimidazole sulfonamide protein tyrosine phosphatase 1B inhibitors containing the heterocyclic (S)-isothiazolidinone phosphotyrosine mimetic. J Med Chem49, 37743789.
  • 44
    Arora SK, Banerjee R, Kamboj RK, Loriya R, Suthar B, Dixit R, Waghchoure A, Goel R & Sreedhara Swamy KH (2009). Novel protein tyrosine phosphatase-1B inhibitors. PCT Int Appl, WO 2009/109998.
  • 45
    Lakshminarayana N, Prasad YR, Gharat L, Thomas A, Narayanan S, Raghuram A, Srinivasan CV & Gopalan B (2010) Synthesis and evaluation of some novel dibenzo[b,d]furan carboxylic acids as potential anti-diabetic agents. Eur J Med Chem45, 37093718.
  • 46
    Fukuda S, Ohta T, Sakata S, Morinaga H, Ito M, Nakagawa Y, Tanaka M & Matsushita M (2010) Pharmacological profiles of a novel protein tyrosine phosphatase 1B inhibitor, JTT-551. Diabetes Obes Metab12, 299306.
  • 47
    You-ten KE, Muise ES, Itie A, Michaliszyn E, Wagner J, Jothy S, Lapp WS & Tremblay ML (1997) Impaired bone marrow microenvironment and immune function in T cell protein tyrosine phosphatase-deficient mice. J Exp Med186, 683693.
  • 48
    Simoncic PD, Lee-Loy A, Barber DL, Tremblay ML & McGlade CJ (2002) The T cell protein tyrosine phosphatase is a negative regulator of janus family kinases 1 and 3. Curr Biol12, 446453.
  • 49
    Tiganis T, Bennett AM, Ravichandran KS & Tonks NK (1998) Epidermal growth factor receptor and the adaptor protein p52Shc are specific substrates of T-cell protein tyrosine phosphatase. Mol Cell Biol18, 16221634.
  • 50
    Galic S, Klingler-Hoffmann M, Fodero-Tavoletti MT, Puryer MA, Meng TC, Tonks NK & Tiganis T (2003) Regulation of insulin receptor signaling by the protein tyrosine phosphatase TCPTP. Mol Cell Biol23, 20962108.
  • 51
    van Vliet C, Bukczynska PE, Puryer MA, Sadek CM, Shields BJ, Tremblay ML & Tiganis T (2005) Selective regulation of tumor necrosis factor-induced Erk signaling by Src family kinases and the T cell protein tyrosine phosphatase. Nat Immunol6, 253260.
  • 52
    Zhang S, Chen L, Luo Y, Gunawan A, Lawrence DS & Zhang ZY (2009) Acquisition of a potent and selective TC-PTP inhibitor from a stepwise fluorophore-tagged combinatorial synthesis and screening strategy. J Am Chem Soc131, 1307213079.
  • 53
    Hof P, Pluskey S, Dhe-Paganon S, Eck MJ & Shoelson SE (1998) Crystal structure of the SH2 domain phosphatase SHP-2. Cell, 98, 441450.
  • 54
    Tiganis T & Bennett AM (2007) Protein tyrosine phosphatase function: the substrate perspective. Biochem J402, 115.
  • 55
    Noren-Muller A, Reis-Correa I, Prinz H, Rosenbaum C, Saxena K, Schwalbe HJ, Vestweber D, Cagna G, Schunk S, Schwarz O et al. (2006) Discovery of protein phosphatase inhibitor classes by biology-oriented synthesis. Proc Natl Acad Sci USA103, 1060610611.
  • 56
    Chen LW, Sung SS, Yip MLR, Lawrence HR, Ren Y, Guida WC, Sebti SM, Lawrence NJ & Wu J (2006) Discovery of a novel shp2 protein tyrosine phosphatase inhibitor. Mol Pharmacol70, 562570.
  • 57
    Lawrence HR, Pireddu R, Chen LW, Luo YT, Sung SS, Szymanski AM, Yip MLR, Guida WC, Sebti SM, Wu J et al. (2008) Inhibitors of Src homology-2 domain containing protein tyrosine phosphatase-2 (Shp2) based on oxindole scaffolds. J Med Chem51, 49484956.
  • 58
    Hellmuth K, Grosskopf S, Lum CT, Wurtele M, Roder N, Kries JPV, Rosario M, Rademann J & Birchmeier W (2008) Specific inhibitors of the protein tyrosine phosphatase Shp2 identified by high-throughput docking. Proc Natl Acad Sci USA105, 72757280.
  • 59
    Zhang X, He Y, Liu S, Yu Z, Jiang ZX, Yang Z, Dong Y, Nabinger SC, Wu L, Gunawan AM et al. (2010) Salicylic acid based small molecule inhibitor for the oncogenic Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2). J Med Chem53, 24822493.
  • 60
    Yu ZH, Chen L, Wu L, Liu S, Wang L & Zhang ZY (2011) Small molecule inhibitors of SHP2 tyrosine phosphatase discovered by virtual screening. Bioorg Med Chem Lett21, 42384242.
  • 61
    Liu S, Yu Z, Yu X, Huang SX, Luo Y, Wu L, Shen W, Yang Z, Wang L, Gunawan AM et al. (2011) SHP2 is a target of the immunosuppressant tautomycetin. Chem Biol18, 101110.
  • 62
    Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M, MacMurray J, Meloni GF, Lucarelli P, Pellecchia M et al. (2004) A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet36, 337338.
  • 63
    Bottini N, Vang T, Cucca F & Mustelin T (2006) Role of PTPN22 in type 1 diabetes and other autoimmune diseases. Semin Immunol18, 207213.
  • 64
    Begovich AB, Carlton VE, Honigberg LA, Schrodi SJ, Chokkalingam AP, Alexander HC, Ardlie KG, Huang Q, Smith AM, Spoerke JM et al. (2004) A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet75, 330337.
  • 65
    Carlton VE, Hu X, Chokkalingam AP, Schrodi SJ, Brandon R, Alexander HC, Chang M, Catanese JJ, Leong DU, Ardlie KG et al. (2005) PTPN22 genetic variation: evidence for multiple variants associated with rheumatoid arthritis. Am J Hum Genet77, 567581.
  • 66
    Velaga MR, Wilson V, Jennings CE, Owen CJ, Herington S, Donaldson PT, Ball SG, James RA, Quinton R, Perros P et al. (2004) The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP) gene is a major determinant of Graves’ disease. J Clin Endocrinol Metab89, 58625865.
  • 67
    Smyth D, Cooper JD, Collins JE, Heward JM, Franklyn JA, Howson JM, Vella A, Nutland S, Rance HE, Maier L et al. (2004) Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes53, 30203023.
  • 68
    Vandiedonck C, Capdevielle C, Giraud M, Krumeich S, Jais JP, Eymard B, Tranchant C, Gajdos P & Garchon HJ (2006) Association of the PTPN22*R620W polymorphism with autoimmune myasthenia gravis. J Ann Neurol59, 404407.
  • 69
    Kyogoku C, Langefeld CD, Ortmann WA, Lee A, Selby S, Carlton VE, Chang M, Ramos P, Baechler EC, Batliwalla FM et al. (2004) Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am J Hum Genet75, 504507.
  • 70
    Yu X, Sun JP, He Y, Guo XL, Liu S, Zhou B, Hudmon A & Zhang ZY (2007) Structure, inhibitor, and regulatory mechanism of Lyp, a lymphoid-specific tyrosine phosphatase implicated in autoimmune diseases. Proc Natl Acad Sci USA104, 1976719772.
  • 71
    Wu S, Bottini M, Rickert RC, Mustelin T & Tautz L (2009) In silico screening for PTPN22 inhibitors: active hits from an inactive phosphatase conformation. ChemMedChem4, 440444.
  • 72
    Stanford SM, Krishnamurthy D, Falk MD, Messina R, Debnath B, Li S, Liu T, Kazemi R, Dahl R, He Y et al. (2011) Discovery of a novel series of inhibitors of lymphoid tyrosine phosphatase with activity in human T cells. J Med Chem54, 16401654.
  • 73
    Vang T, Liu WH, Delacroix L, Wu S, Vasile S, Dahl R, Yang L, Musumeci L, Francis D & Landskron J (2012) LYP inhibits T-cell activation when dissociated from CSK. Nat Chem Biol8, 437446.
  • 74
    Karver MR, Krishnamurthy D, Kulkarni RA, Bottini N & Barrios AM (2009) Identifying potent, selective protein tyrosine phosphatase inhibitors from a library of Au(I) complexes. J Med Chem52, 69126918.
  • 75
    Zanke B, Suzuki H, Kishihara K, Mizzen L, Minden M, Pawson A & Mak TW (1992) Cloning and expression of an inducible lymphoid-specific, protein tyrosine phosphatase (HePTPase). Eur J Immunol22, 235239.
  • 76
    Saxena M, Williams S, Brockdorff J, Gilman J & Mustelin T (1999) Inhibition of T cell signaling by mitogen-activated protein kinase-targeted hematopoietic tyrosine phosphatase (HePTP). J Biol Chem274, 1169311700.
  • 77
    Zanke B, Squire J, Griesser H, Henry M, Suzuki H, Patterson B, Minden M & Mak TW (1994) A hematopoietic protein tyrosine phosphatase (HePTP) gene that is amplified and overexpressed in myeloid malignancies maps to chromosome 1q32.1. Leukemia, 8, 236244.
  • 78
    Bobkova EV, Liu WH, Colayco S, Rascon J, Vasile S, Gasior C, Critton DA, Chan X, Dahl R, Su Y et al. (2011) Inhibition of the hematopoietic protein tyrosine phosphatase by phenoxyacetic acids. ACS Med Chem Lett2, 113118.
  • 79
    Sergienko E, Xu J, Liu WH, Dahl R, Critton DA, Su Y, Brown BT, Chan X, Yang L, Bobkova EV et al. (2012) Inhibition of hematopoietic protein tyrosine phosphatase augments and prolongs ERK1/2 and p38 activation. ACS Chem Biol7, 367377.
  • 80
    Pingel JT & Thomas ML (1989) Evidence that the leukocyte-common antigen is required for antigen-induced T lymphocyte proliferation. Cell58, 10551065.
  • 81
    Prickett TC & Hart DN (1990) Anti-leucocyte common (CD45) antibodies inhibit dendritic cell stimulation of CD4 and CD8 T-lymphocyte proliferation. Immunology69, 250256.
  • 82
    Jacobsen M, Schweer D, Ziegler A, Gaber R, Schock S, Schwinzer R, Wonigeit K, Lindert RB, Kantarci O, Schaefer-Klein J et al. (2000) A point mutation in PTPRC is associated with the development of multiple sclerosis. Nat Genet26, 495499.
  • 83
    Tan J, Town T, Mori T, Wu Y, Saxe M, Crawford F & Mullan M (2000) CD45 opposes beta-amyloid peptide-induced microglial activation via inhibition of p44/42 mitogen-activated protein kinase. J Neurosci20, 75877594.
  • 84
    Bataille R, Robillard N, Pellat-Deceunynck C & Amiot M (2003) A cellular model for myeloma cell growth and maturation based on an intraclonal CD45 hierarchy. Immunol Rev194, 105111.
  • 85
    Beers SA, Malloy EA, Wu W, Wachter MP, Gunnia U, Cavender D, Harris C, Davis J, Brosius R, Pellegrino-Gensey JL et al. (1997) Nitroarylhydroxymethylphosphonic acids as inhibitors of CD45. Bioorg Med Chem5, 22032211.
  • 86
    Urbanek RA, Suchard SJ, Steelman GB, Knappenberger KS, Sygowski LA, Veale CA & Chapdelaine MJ (2001) Potent reversible inhibitors of the protein tyrosine phosphatase CD45. J Med Chem44, 17771793.
  • 87
    Hamaguchi T, Takahashi A, Kagamizono T, Manaka A, Sato M & Osada H (2000) Synthesis and characterization of a potent and selective protein tyrosine phosphatase inhibitor, 2-[(4-methylthiopyridin-2-yl)methylsufinyl]benzimidazole. Bioorg Med Chem Lett10, 26572660.
  • 88
    Hamaguchi T, Takahashi A, Manaka A, Sato M & Osada H (2001) TU-572, a potent and selective CD45 inhibitor, suppresses IgE-mediated anaphylaxis and murine contact hypersensitivity reactions. Int Arch Allergy Immunol126, 318324.
  • 89
    Winderlich M, Keller L, Cagna G, Broermann A, Kamenyeva O, Kiefer F, Deutsch U, Nottebaum AF & Vestweber D (2009) VE-PTP controls blood vessel development by balancing Tie-2 activity. J Cell Biol185, 657671.
  • 90
    Baumer S, Keller L, Holtmann A, Funke R, August B, Gamp A, Wolburg H, Wolburg-Buchholz K, Deutsch U & Vestweber D (2006) Vascular endothelial cell-specific phosphotyrosine phosphatase (VE-PTP) activity is required for blood vessel development. Blood107, 47544762.
  • 91
    Dominguez MG, Hughes VC, Pan L, Simmons M, Daly C, Anderson K, Noguera-Troise I, Murphy AJ, Valenzuela DM, Davis S et al. (2007) Vascular endothelial tyrosine phosphatase (VE-PTP)-null mice undergo vasculogenesis but die embryonically because of defects in angiogenesis. Proc Natl Acad Sci USA104, 32433248.
  • 92
    Lund IK, Andersen HS, Iversen LF, Olsen OH, Møller KB, Pedersen AK, Ge Y, Holsworth DD, Newman MJ, Fu A et al. (2004) Structure-based design of selective and potent inhibitors of protein-tyrosine phosphatase ß. J Biol Chem279, 2422624235.
  • 93
    Amarasinghe KKD, Evidokimov AG, Xu K, Clark CM, Maier MB, Srivastava A, Colson AO, Gerwe GS, Stake GE, Howard BW et al. (2006) Design and synthesis of potent, non-peptidic inhibitors of HPTPß. Bioorg Med Chem Lett16, 42524256.
  • 94
    LaForgia S, Morse B, Levy J, Barnea G, Cannizzaro LA, Li F, Nowell PC, Boghosian-Sell L, Glick J, Weston A et al. (1991) Receptor protein-tyrosine phosphatase gamma is a candidate tumor suppressor gene at human chromosome region 3p21. Proc Natl Acad Sci USA88, 50365040.
  • 95
    Lamprianou S, Vacaresse N, Suzuki Y, Meziane H, Buxbaum JD, Schlessinger J & Harroch S (2006) Receptor protein tyrosine phosphatase γ is a marker for pyramidal cells and sensory neurons in the nervous system and is not necessary for normal development. Mol Cell Biol26, 51065119.
  • 96
    Sheriff S, Beno BR, Zhai W, Kostich WA, McDonnell PA, Kish K, Goldfarb V, Gao M, Kiefer SE, Yanchunas J et al. (2011) Small molecule receptor protein tyrosine phosphatase γ (RPTPγ) ligands that inhibit phosphatase activity via perturbation of the tryptophan-proline-aspartate (WPD) loop. J Med Chem54, 65486562.
  • 97
    Motiwala T, Kutay H, Ghoshal K, Bai S, Seimiya H, Tsuruo T, Suster S, Morrison C & Jacob ST (2004) Protein tyrosine phosphatase receptor-type O (PTPRO) exhibits characteristics of a candidate tumor suppressor in human lung cancer. Proc Natl Acad Sci USA101, 1384413849.
  • 98
    Stepanek L, Stoker AW, Stoeckli E & Bixby JL (2005) Receptor tyrosine phosphatases guide vertebrate motor axons during development. J Neurosci25, 38133823.
  • 99
    Pixley FJ & Stanley ER (2004) CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol14, 628638.
  • 100
    Bombrun A, Hooft van Huijsduijnen R, Jorand-Lebrun C, Vitte PA & Gerber P (2007) Glepp-1 inhibitors in the treatment of autoimmune and/or inflammatory disorders. PCT WO2007009959.
  • 101
    Gobert RP, van den Eijnden M, Szyndralewiez C, Jorand-Lebrun C, Swinnen D, Chen L, Gillieron C, Pixley F, Juillard P, Gerber P et al. (2009) GLEPP1/protein-tyrosine phosphatase phi inhibitors block chemotaxis in vitro and in vivo and improve murine ulcerative colitis. J Biol Chem284, 1138511395.
  • 102
    Todd JL, Rigas JD, Rafty LA & Denu JM (2002) Dual-specificity protein tyrosine phosphatase VHR down-regulates c-Jun N-terminal kinase (JNK). Oncogene21, 25732583.
  • 103
    Rahmouni S, Cerignoli F, Alonso A, Tsutji T, Henkens R, Zhu C, Louis-dit-Sully C, Moutschen M, Jiang W & Mustelin T (2006) Loss of the VHR dual-specific phosphatase causes cell-cycle arrest and senescence. Nat Cell Biol8, 524531.
  • 104
    Wu S, Vossius S, Rahmouni S, Miletic AV, Vang T, Vazquez-Rodriguez J, Cerignoli F, Arimura Y, Williams S, Hayes T et al. (2009) Multidentate small-molecule inhibitors of Vaccinia H1-related (VHR) phosphatase decrease proliferation of cervix cancer cells. J Med Chem52, 67166723.
  • 105
    Hirai G, Tsuchiya A, Koyama Y, Otani Y, Oonuma K, Dodo K, Simizu S, Osada H & Sodeoka M (2011) Development of a Vaccinia H1-related (VHR) phosphatase inhibitor with a nonacidic phosphate-mimicking core structure. ChemMedChem6, 617622.
  • 106
    Keyse SM (2008) Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer Metastasis Rev27, 253261.
  • 107
    Doddareddy MR, Rawling T & Ammit AJ (2012) Targeting mitogen-activated protein kinase phosphatase-1 (MKP-1): structure-based design of MKP-1 inhibitors and upregulators. Curr Med Chem19, 163173.
  • 108
    Vogt A, Tamewitz A, Skoko J, Sikorski RP, Giuliano KA & Lazo JS (2005) The benzo[c]phenanthridine alkaloid, sanguinarine, is a selective, cell-active inhibitor of mitogen-activated protein kinase phosphatase-1. J Biol Chem280, 1907819086.
  • 109
    Lazo JS, Skoko JJ, Werner S, Mitasev B, Bakan A, Koizumi F, Yellow-Duke A, Bahar I & Brummond KM (2007) Structurally unique inhibitors of human mitogen-activated protein kinase phosphatase-1 identified in a pyrrole carboxamide library. J Pharmacol Exp Ther322, 940947.
  • 110
    Molina G, Vogt A, Bakan A, Dai W, Queiroz de Oliveira P, Znosko W, Smithgall TE, Bahar I, Lazo JS, Day BW et al. (2009) Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages. Nat Chem Biol5, 680687.
  • 111
    Rudolph J (2007) Cdc25 phosphatases: structure, specificity, and mechanism. Biochemistry46, 35953604.
  • 112
    Galaktionov K, Lee AK, Eckstein J, Draetta G, Meckler J, Loda M & Beach D (1995) Cdc25 phosphatases as potential human oncogenes. Science269, 15751577.
  • 113
    Brohm D, Metzger S, Bhargava A, Muller O, Lieb F & Waldmann H (2002) Natural products are biologically validated starting points in structural space for compound library development: solid-phase synthesis of dysidiolide-derived phosphatase inhibitors. Angew Chem Int Ed41, 307311.
  • 114
    Peng H, Xie W, Kim DI, Zalkow LH, Powis G, Otterness DM & Abraham RT (2000) Steroidal derived acids as inhibitors of human Cdc25A protein phosphatase. Bioorg Med Chem8, 299306.
  • 115
    Lazo JS, Nemoto K, Pestell KE, Cooley K, Southwick EC, Mitchell DA, Furey W, Gussio R, Zaharevitz DW, Joo B et al. (2002) Identification of a potent and selective pharmacophore for Cdc25 dual specificity phosphatase inhibitors. Mol Pharmacol61, 720728.
  • 116
    Black DS & Bliska JB (1997) Identification of p130Cas as a substrate of Yersinia YopH (Yop51), a bacterial protein tyrosine phosphatase that translocates into mammalian cells and targets focal adhesions. EMBO J16, 27302744.
  • 117
    Humphreys D, Hume PJ & Koronakis V (2009) The Salmonella effector SptP dephosphorylates host AAA+ ATPase VCP to promote development of its intracellular replicative niche. Cell Host Microbe5, 225233.
  • 118
    Singh R, Rao V, Shakila H, Gupta R, Khera A, Dhar N, Singh A, Koul A, Singh Y, Naseema M et al. (2003) Disruption of mptpB impairs the ability of Mycobacterium tuberculosis to survive in guinea pigs. Mol Microbiol50, 751762.
  • 119
    Singh R, Singh A & Tyagi AK (2005) Deciphering the genes involved in pathogenesis of Mycobacterium tuberculosis. Tuberculosis (Edinb)85, 325335.
  • 120
    Koul A, Herget T, Klebl B & Ullrich A (2004) Interplay between mycobacteria and host signalling pathways. Nat Rev Microbiol2, 189202.
  • 121
    Liang F, Huang Z, Lee SY, Liang J, Ivanov MI, Alonso A, Bliska JB, Lawrence DS, Mustelin T & Zhang ZY (2003) Aurintricarboxylic acid blocks in vitro and in vivo activity of YopH, an essential virulent factor of Yersinia pestis, the agent of plague. J Biol Chem278, 4173441741.
  • 122
    Bahta M, Lountos GT, Dyas B, Kim SE, Ulrich RG, Waugh DS & Burke TR Jr (2011) Utilization of nitrophenylphosphates and oxime-based ligation for the development of nanomolar affinity inhibitors of the Yersinia pestis outer protein H (YopH) phosphatase. J Med Chem54, 29332943.
  • 123
    Rawls KA, Lang P, Takeuchi J, Imamura S, Baguley TD, Grundner C, Alber T & Ellman JA (2009) Fragment-based discovery of selective inhibitors of the Mycobacterium tuberculosis protein tyrosine phosphatase PtpA. Bioorg Med Chem Lett19, 68516854.
  • 124
    Correa IR Jr, Noren-Muller A, Ambrosi HD, Jakupovic S, Saxena K, Schwalbe H, Kaiser M & Waldmann H (2007) Identification of inhibitors for mycobacterial protein tyrosine phosphatase B (MptpB) by biology-oriented synthesis (BIOS). Chem Asian J2, 11091126.
  • 125
    Soellner MB, Rawls KA, Grundner C, Alber T & Ellman JA (2007) Fragment-based substrate activity screening method for the identification of potent inhibitors of the Mycobacterium tuberculosis phosphatase PtpB. J Am Chem Soc129, 96139615.
  • 126
    Beresford NJ, Mulhearn D, Szczepankiewicz B, Liu G, Johnson ME, Fordham-Skelton A, Abad-Zapatero C, Cavet JS & Tabernero L (2009) Inhibition of MptpB phosphatase from Mycobacterium tuberculosis impairs mycobacterial survival in macrophages. J Antimicrob Chemother63, 928936.
  • 127
    Tan LP, Wu H, Yang PY, Kalesh KA, Zhang X, Hu M, Srinivasan R & Yao SQ (2009) A High-throughput discovery of Mycobacterium tuberculosis protein tyrosine phosphatase B (MptpB) inhibitors using click chemistry. Org Lett11, 51025105.
  • 128
    Zhou B, He Y, Zhang X, Xu J, Luo Y, Wang Y, Franzblau SG, Yang Z, Chan R, Liu Y et al. (2010) Targeting mycobacterium protein tyrosine phosphatase B for antituberculosis agents. Proc Natl Acad Sci USA107, 45734578.
  • 129
    Chen L, Zhou B, Zhang S, Wu L, Wang Y, Franzblau SG & Zhang ZY (2010) Identification and characterization of novel inhibitors of mPTPB, an essential virulent phosphatase from Mycobacterium tuberculosis. ACS Med Chem Lett14, 355359.