• 1
    Goodacre SW, Angelini K, Arnold J, Revill S, Morris F. Clinical predictors of acute coronary syndromes in patients with undifferentiated chest pain. QJM 2003; 96: 8938.
  • 2
    Goodacre S, Locker T, Morris F, Campbell S. How useful are clinical features in the diagnosis of acute, undifferentiated chest pain? Acad Emerg Med 2002; 9: 2038.
  • 3
    Diercks DB, Boghos E, Guzman H, Amsterdam EA, Kirk JD. Changes in the numeric descriptive scale for pain after sublingual nitroglycerin do not predict cardiac etiology of chest pain. Ann Emerg Med 2005; 45: 5815.
  • 4
    Shry EA, Dacus J, Van De Graaff E, Hjelkrem M, Stajduhar KC, Steinhubl SR. Usefulness of the response to sublingual nitroglycerin as a predictor of ischemic chest pain in the emergency department. Am J Cardiol 2002; 90: 12646.
  • 5
    Steele R, McNaughton T, McConahy M, Lam J. Chest pain in emergency department patients: if the pain is relieved by nitroglycerin, is it more likely to be cardiac chest pain? CJEM 2006; 8: 1649.
  • 6
    Henrikson CA, Howell EE, Bush DE, et al. Chest pain relief by nitroglycerin does not predict active coronary artery disease. Annals of internal medicine 2003; 139: 97986.
  • 7
    Panju AA, Hemmelgarn BR, Guyatt GG, Simel DL. Is this patient having a myocardial infarction? JAMA 1998; 280: 125663.
  • 8
    Douglas PS, Ginsburg GS. The evaluation of chest pain in women. The New England journal of medicine 1996; 334: 13115.
  • 9
    Solomon CG, Lee TH, Cook EF, et al. Comparison of clinical presentation of acute myocardial infarction in patients older than 65 years of age to younger patients: the Multicenter Chest Pain Study experience. Am J Cardiol 1989; 63: 7726.
  • 10
    Peberdy MA, Ornato JP. Coronary artery disease in women. Heart Dis Stroke 1992; 1: 3159.
  • 11
    Foraker RE, Rose KM, McGinn AP, et al. Neighborhood income, health insurance, and prehospital delay for myocardial infarction: the atherosclerosis risk in communities study. Arch Intern Med 2008; 168: 18749.
  • 12
    Sari I, Acar Z, Ozer O, et al. Factors associated with prolonged prehospital delay in patients with acute myocardial infarction. Turk Kardiyol Dern Ars 2008; 36: 15662.
  • 13
    Jneid H, Fonarow GC, Cannon CP, et al. Sex differences in medical care and early death after acute myocardial infarction. Circulation 2008; 118: 280310.
  • 14
    Banerjee S, Rhoden WE. Fast-tracking of myocardial infarction by paramedics. J R Coll Physicians Lond 1998; 32: 368.
  • 15
    Melville MR, Gray D, et al. The potential impact of prehospital electrocardiography and telemetry on time to thrombolysis in a United Kingdom center. Ann Noninvasive Electrocardiol 1998; 3: 32733.
  • 16
    Millar-Craig MW, Joy AV, Adamowicz M, Furber R, Thomas B. Reduction in treatment delay by paramedic ECG diagnosis of myocardial infarction with direct CCU admission. Heart 1997; 78: 45661.
  • 17
    Sandler DA. Paramedic direct admission of heart-attack patients to a coronary-care unit. Lancet 1998; 352.
  • 18
    Morrison LJ, Brooks S, Sawadsky B, McDonald A, Verbeek PR. Prehospital 12-lead electrocardiography impact on acute myocardial infarction treatment times and mortality: a systematic review. Acad Emerg Med 2006; 13: 849.
  • 19
    Wall T, Albright J, Livingston B, et al. Prehospital ECG transmission speeds reperfusion for patients with acute myocardial infarction. North Carolina Medical Journal 2000; 61: 1048.
  • 20
    Terkelsen CJ, Jorgensen HA, Lassen JF, Norgaard BL, Gerdes JC, Andersen HR. [Telemedicine in prehospital remote diagnosis and re-routing of a patient with acute ST-elevation myocardial infarction to primary percutaneous coronary intervention]. Ugeskr Laeger 2003; 165: 40289.
  • 21
    Terkelsen CJ, Lassen JF, Norgaard BL, Gerdes JC, Nielsen TT, Andersen HR. Are we underestimating the full potential of early thrombolytic treatment in patients with acute myocardial infarction? Heart 2003; 89: 4834.
  • 22
    Terkelsen CJ, Norgaard BL, Lassen JF, et al. Telemedicine used for remote prehospital diagnosing in patients suspected of acute myocardial infarction. J Intern Med 2002; 252: 41220.
  • 23
    Swor R, Anderson W, Jackson R, Wilson A. Effects of EMS transportation on time to diagnosis and treatment of acute myocardial infarction in the emergency department. Prehosp Disaster Med 1994; 9: 1604.
  • 24
    Swor R, Hegerberg S, McHugh-McNally A, Goldstein M, McEachin CC. Prehospital 12-lead ECG: efficacy or effectiveness? Prehosp Emerg Care 2006; 10: 3747.
  • 25
    Takakuwa KM, Burek GA, Estepa AT, Shofer FS. A method for improving arrival-to-electrocardiogram time in emergency department chest pain patients and the effect on door-to-balloon time for ST-segment elevation myocardial infarction. Acad Emerg Med 2009; 16: 9217.
  • 26
    Thorn S, Attali P, Boulenc JM, et al. [Delays of treatment of acute myocardial infarction with ST elevation admitted to the CCU (coronary care unit) in Alsace]. Arch Mal Coeur Vaiss 2007; 100: 712.
  • 27
    Trivedi K, Schuur JD, Cone DC. Can paramedics read ST-segment elevation myocardial infarction on prehospital 12-lead electrocardiograms? Prehosp Emerg Care 2009; 13: 20714.
  • 28
    Vaught C, Young DR, Bell SJ, et al. The failure of years of experience with electrocardiographic transmission from paramedics to the hospital emergency department to reduce the delay from door to primary coronary intervention below the 90-minute threshold during acute myocardial infarction. J Electrocardiol 2006; 39: 13641.
  • 29
    Youngquist ST, Shah AP, Niemann JT, Kaji AH, French WJ. A comparison of door-to-balloon times and false-positive activations between emergency department and out-of-hospital activation of the coronary catheterization team. Acad Emerg Med 2008; 15: 7847.
  • 30
    Zalenski RJ, Rydman RJ, Sloan EP, Caceres L, Murphy DG, Cooke D. The emergency department electrocardiogram and hospital complications in myocardial infarction patients. Acad Emerg Med 1996; 3: 31825.
  • 31
    Rao A, Kardouh Y, Darda S, et al. Impact of the prehospital ECG on door-to-balloon time in ST elevation myocardial infarction. Catheter Cardiovasc Interv 75: 1748.
  • 32
    Adams GL, Campbell PT, Adams JM, et al. Effectiveness of prehospital wireless transmission of electrocardiograms to a cardiologist via hand-held device for patients with acute myocardial infarction (from the Timely Intervention in Myocardial Emergency, NorthEast Experience [TIME-NE]). Am J Cardiol 2006; 98: 11604.
  • 33
    Brown JP, Mahmud E, Dunford JV, Ben-Yehuda O. Effect of prehospital 12-lead electrocardiogram on activation of the cardiac catheterization laboratory and door-to-balloon time in ST-segment elevation acute myocardial infarction. Am J Cardiol 2008; 101: 15861.
  • 34
    Clemmensen P, Sejersten M, Sillesen M, Hampton D, Wagner GS, Loumann-Nielsen S. Diversion of ST-elevation myocardial infarction patients for primary angioplasty based on wireless prehospital 12-lead electrocardiographic transmission directly to the cardiologist's handheld computer: a progress report. J Electrocardiol 2005; 38: 1948.
  • 35
    Eggers KM, Oldgren J, Nordenskjold A, Lindahl B. Diagnostic value of serial measurement of cardiac markers in patients with chest pain: limited value of adding myoglobin to troponin I for exclusion of myocardial infarction. Am Heart J 2004; 148: 57481.
  • 36
    Jaffe AS, Apple FS, Morrow DA, Lindahl B, Katus HA. Being rational about (im)precision: a statement from the Biochemistry Subcommittee of the Joint European Society of Cardiology/American College of Cardiology Foundation/American Heart Association/World Heart Federation Task Force for the definition of myocardial infarction. Clin Chem 56: 9413.
  • 37
    Macrae AR, Kavsak PA, Lustig V, et al. Assessing the requirement for the 6-hour interval between specimens in the American Heart Association Classification of Myocardial Infarction in Epidemiology and Clinical Research Studies. Clin Chem 2006; 52: 8128.
  • 38
    Kavsak PA, Worster A, You JJ, et al. Identification of myocardial injury in the emergency setting. Clin Biochem 43: 53944.
  • 39
    Reichlin T, Hochholzer W, Bassetti S, et al. Early diagnosis of myocardial infarction with sensitive cardiac troponin assays. The New England journal of medicine 2009; 361: 85867.
  • 40
    Jaffe AS, Apple FS. High-sensitivity cardiac troponin: hype, help, and reality. Clin Chem 56: 3424.
  • 41
    Giannitsis E, Kurz K, Hallermayer K, Jarausch J, Jaffe AS, Katus HA. Analytical validation of a high-sensitivity cardiac troponin T assay. Clin Chem 56: 25461.
  • 42
    Keller T, Zeller T, Peetz D, et al. Sensitive troponin I assay in early diagnosis of acute myocardial infarction. The New England journal of medicine 2009; 361: 86877.
  • 43
    Thygesen K, Mair J, Katus H, et al. Recommendations for the use of cardiac troponin measurement in acute cardiac care. Eur Heart J 31: 2197204.
  • 44
    Thygesen K, Mair J, Mueller C, et al. Recommendations for the use of natriuretic peptides in acute cardiac care: A position statement from the Study Group on Biomarkers in Cardiology of the ESC Working Group on Acute Cardiac Care. Eur Heart J 2011; 2.
  • 45
    O'Connor RE, Bossaert L, Arntz HR, et al. Part 9: acute coronary syndromes: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation 122: S42265.
  • 46
    Jeremias A, Gibson CM. Narrative review: alternative causes for elevated cardiac troponin levels when acute coronary syndromes are excluded. Annals of internal medicine 2005; 142: 78691.
  • 47
    Jaffe AS, Babuin L, Apple FS. Biomarkers in acute cardiac disease: the present and the future. J Am Coll Cardiol 2006; 48: 111.
  • 48
    Apple FS, Jesse RL, Newby LK, et al. National Academy of Clinical Biochemistry and IFCC Committee for Standardization of Markers of Cardiac Damage Laboratory Medicine Practice Guidelines: analytical issues for biochemical markers of acute coronary syndromes. Clin Chem 2007; 53: 54751.
  • 49
    Lee-Lewandrowski E, Januzzi JL, Green SM, et al. Multi-center validation of the Response Biomedical Corporation RAMP NT-proBNP assay with comparison to the Roche Diagnostics GmbH Elecsys proBNP assay. Clin Chim Acta 2007; 386: 204.
  • 50
    Apple FS, Jaffe AS. Bedside multimarker testing for risk stratification in chest pain units: The chest pain evaluation by creatine kinase-MB, myoglobin, and troponin I (CHECKMATE) study. Circulation 2001; 104: E1256.
  • 51
    Chase M, Robey JL, Zogby KE, Sease KL, Shofer FS, Hollander JE. Prospective validation of the Thrombolysis in Myocardial Infarction Risk Score in the emergency department chest pain population. Ann Emerg Med 2006; 48: 2529.
  • 52
    Pollack CV, Jr., Sites FD, Shofer FS, Sease KL, Hollander JE. Application of the TIMI risk score for unstable angina and non-ST elevation acute coronary syndrome to an unselected emergency department chest pain population. Acad Emerg Med 2006; 13: 138.
  • 53
    Soiza RL, Leslie SJ, Williamson P, et al. Risk stratification in acute coronary syndromes–does the TIMI risk score work in unselected cases? QJM 2006; 99: 817.
  • 54
    Jaffery Z, Hudson MP, Jacobsen G, Nowak R, McCord J. Modified thrombolysis in myocardial infarction (TIMI) risk score to risk stratify patients in the emergency department with possible acute coronary syndrome. J Thromb Thrombolysis 2007; 24: 13744.
  • 55
    Arnold J, Goodacre S, Morris F. Structure, process and outcomes of chest pain units established in the ESCAPE trial. Emerg Med J 2007; 24: 4626.
  • 56
    Goodacre S, Morris F, Arnold J, Angelini K. Is a chest pain observation unit likely to be cost saving in a British hospital? Emerg Med J 2001; 18: 114.
  • 57
    Goodacre SW, Morris FM, Campbell S, Arnold J, Angelini K. A prospective, observational study of a chest pain observation unit in a British hospital. Emerg Med J 2002; 19: 11721.
  • 58
    Stephenson DT, Wardrope JW, Goodacre SW. Is prehospital thrombolysis for acute myocardial infarction warranted in the urban setting? The case against. Emerg Med J 2002; 19: 4447.
  • 59
    Goodacre S, Nicholl J, Dixon S, et al. Randomised controlled trial and economic evaluation of a chest pain observation unit compared with routine care. BMJ 2004; 328: 254.
  • 60
    Goodacre S, Turner J, Nicholl J. Prediction of mortality among emergency medical admissions. Emerg Med J 2006; 23: 3725.
  • 61
    Goodacre S, Cross E, Lewis C, Nicholl J, Capewell S. Effectiveness and safety of chest pain assessment to prevent emergency admissions: ESCAPE cluster randomised trial. BMJ 2007; 335: 659.
  • 62
    Aroney CN, Dunlevie HL, Bett JH. Use of an accelerated chest pain assessment protocol in patients at intermediate risk of adverse cardiac events. Med J Aust 2003; 178: 3704.
  • 63
    Hansen M, Ginns J, Seneviratne S, et al. The value of dual-source 64-slice CT coronary angiography in the assessment of patients presenting to an acute chest pain service. Heart Lung Circ 19: 2138.
  • 64
    Santoro GM, Sciagra R, Buonamici P, et al. Head-to-head comparison of exercise stress testing, pharmacologic stress echocardiography, and perfusion tomography as first-line examination for chest pain in patients without history of coronary artery disease. J Nucl Cardiol 1998; 5: 1927.
  • 65
    Stowers SA, Eisenstein EL, Th Wackers FJ, et al. An economic analysis of an aggressive diagnostic strategy with single photon emission computed tomography myocardial perfusion imaging and early exercise stress testing in emergency department patients who present with chest pain but nondiagnostic electrocardiograms: results from a randomized trial. Ann Emerg Med 2000; 35: 1725.
  • 66
    Astarita C, Palinkas A, Nicolai E, Maresca FS, Varga A, Picano E. Dipyridamole-atropine stress echocardiography versus exercise SPECT scintigraphy for detection of coronary artery disease in hypertensives with positive exercise test. J Hypertens 2001; 19: 495502.
  • 67
    Ben-Gal T, Zafrir N. The utility and potential cost-effectiveness of stress myocardial perfusion thallium SPECT imaging in hospitalized patients with chest pain and normal or non-diagnostic electrocardiogram. Isr Med Assoc J 2001; 3: 72530.
  • 68
    Conti A, Gallini C, Costanzo E, et al. Early detection of myocardial ischaemia in the emergency department by rest or exercise (99m)Tc tracer myocardial SPET in patients with chest pain and non-diagnostic ECG. Eur J Nucl Med 2001; 28: 180610.
  • 69
    Gentile R, Vitarelli A, Schillaci O, et al. Diagnostic accuracy and prognostic implications of stress testing for coronary artery disease in the elderly. Ital Heart J 2001; 2: 53945.
  • 70
    Conti A, Paladini B, Magazzini S, et al. Chest pain unit management of patients at low and not low-risk for coronary artery disease in the emergency department. A 5-year experience in the Florence area. Eur J Emerg Med 2002; 9: 316.
  • 71
    Conti A, Zanobetti M, Grifoni S, et al. Implementation of myocardial perfusion imaging in the early triage of patients with suspected acute coronary syndromes. Nucl Med Commun 2003; 24: 105560.
  • 72
    Conti A, Sammicheli L, Gallini C, Costanzo EN, Antoniucci D, Barletta G. Assessment of patients with low-risk chest pain in the emergency department: Head-to-head comparison of exercise stress echocardiography and exercise myocardial SPECT. Am Heart J 2005; 149: 894901.
  • 73
    Candell-Riera J, Oller-Martinez G, de Leon G, Castell-Conesa J, Aguade-Bruix S. Yield of early rest and stress myocardial perfusion single-photon emission computed tomography and electrocardiographic exercise test in patients with atypical chest pain, nondiagnostic electrocardiogram, and negative biochemical markers in the emergency department. Am J Cardiol 2007; 99: 16626.
  • 74
    Rubinshtein R, Halon DA, Gaspar T, et al. Usefulness of 64-slice cardiac computed tomographic angiography for diagnosing acute coronary syndromes and predicting clinical outcome in emergency department patients with chest pain of uncertain origin. Circulation 2007; 115: 17628.
  • 75
    Sharples L, Hughes V, Crean A, et al. Cost-effectiveness of functional cardiac testing in the diagnosis and management of coronary artery disease: a randomised controlled trial. The CECaT trial. Health Technol Assess 2007; 11: iiiiv, ix–115.
  • 76
    Bedetti G, Pasanisi EM, Pizzi C, Turchetti G, Lore C. Economic analysis including long-term risks and costs of alternative diagnostic strategies to evaluate patients with chest pain. Cardiovasc Ultrasound 2008; 6: 21.
  • 77
    Hoffmann U, Bamberg F, Chae CU, et al. Coronary computed tomography angiography for early triage of patients with acute chest pain: the ROMICAT (Rule Out Myocardial Infarction using Computer Assisted Tomography) trial. J Am Coll Cardiol 2009; 53: 164250.
  • 78
    Garber AM, Solomon NA. Cost-effectiveness of alternative test strategies for the diagnosis of coronary artery disease. Annals of internal medicine 1999; 130: 71928.
  • 79
    Mowatt G, Vale L, Brazzelli M, et al. Systematic review of the effectiveness and cost-effectiveness, and economic evaluation, of myocardial perfusion scintigraphy for the diagnosis and management of angina and myocardial infarction. Health Technol Assess 2004; 8: iiiiv, 1–207.
  • 80
    Jeetley P, Burden L, Senior R. Stress echocardiography is superior to exercise ECG in the risk stratification of patients presenting with acute chest pain with negative Troponin. Eur J Echocardiogr 2006; 7: 15564.
  • 81
    Jeetley P, Hickman M, Kamp O, et al. Myocardial contrast echocardiography for the detection of coronary artery stenosis: a prospective multicenter study in comparison with single-photon emission computed tomography. J Am Coll Cardiol 2006; 47: 1415.
  • 82
    Jeetley P, Burden L, Greaves K, Senior R. Prognostic value of myocardial contrast echocardiography in patients presenting to hospital with acute chest pain and negative troponin. Am J Cardiol 2007; 99: 136973.
  • 83
    Jeetley P, Burden L, Stoykova B, Senior R. Clinical and economic impact of stress echocardiography compared with exercise electrocardiography in patients with suspected acute coronary syndrome but negative troponin: a prospective randomized controlled study. Eur Heart J 2007; 28: 20411.
  • 84
    Brown A, Brieger D, Tonkin A, et al. Coronary disease in indigenous populations: summary from the CSANZ indigenous Cardiovascular Health Conference. Heart Lung Circ 2010; 19: 299305.
  • 85
    Antman EM, Hand M, Armstrong PW, et al. 2007 Focused Update of the ACC/AHA 2004 Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines: developed in collaboration With the Canadian Cardiovascular Society endorsed by the American Academy of Family Physicians: 2007 Writing Group to Review New Evidence and Update the ACC/AHA 2004 Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction, Writing on Behalf of the 2004 Writing Committee. Circulation 2008; 117: 296329.
  • 86
    Antman EM, Cohen M, Bernink PJ, et al. The TIMI risk score for unstable angina/non-ST elevation MI: A method for prognostication and therapeutic decision making. JAMA 2000; 284: 83542.