• 1
    Spinks AB, Wasiak J, Villanueva EV, Bernath V. Scopolamine for preventing and treating motion sickness. Cochrane Database Syst Rev 2004;3:CD002851.
  • 2
    Reason JT, Brand JJ. Motion Sickness. Academic Press, London, 1975.
  • 3
    James W. The sense of dizziness in deaf-mutes. Am J Otol 1882;4:23954.
  • 4
    Kennedy RS, Graybiel A, McDonough RC, Beckwith FD. Symptomatology under storm conditions in the North Atlantic in control subjects and in persons with bilateral labyrinthine defects. NSAM-928, NASA Ord. No. R-P3, Naval School of Aviation Medicine, Pensacola, FL, May 25, 1965.
  • 5
    Reynolds TT. On the nature and treatment of seasickness. Lancet 1884;1:11612.
  • 6
    Sjoberg A. Experimental studies of the eliciting mechanism of sea sickness. Acta Otolaryngol 1929;13:3437.
  • 7
    Wilpizeski CR, Lowry LD, Goldman WS. Motion-induced sickness following bilateral ablation of area postrema in squirrel monkeys. Laryngoscope 1986;96:12215.
  • 8
    Miller AD, Wilson VJ. Vestibular-induced vomiting after vestibulocerebellar lesions. Brain Behav Evol 1983;23:2631.
  • 9
    Stoffregen TA, Smart LJ, Jr. Postural instability precedes motion sickness. Brain Res Bull 1998;47:43748.
  • 10
    Van Sickle MD, Oland LD, Mackie K, Davison JS, Sharkey KA. Δ9-Tetrahydrocannabinol selectively acts on CB1 receptors in specific regions of dorsal vagal complex to inhibit emesis in ferrets. Am J Physiol 2003;285:G56676.
  • 11
    Van Sickle MD, Oland LD, Ho W, Hillard CJ, Mackie K, Davison JS et al . Cannabinoids inhibit emesis through CB1 receptors in the brainstem of the ferret. Gastroenterology 2001;121:76774.
  • 12
    Parker LA, Kwiatkowska M, Burton P, Mechoulam R. Effect of cannabinoids on lithium-induced vomiting in the Suncus murinus (house musk shrew). Psychopharmacology (Berl) 2004;171:15661.
  • 13
    Darmani NA. The cannabinoid CB1 receptor antagonist SR 141716A reverses the antiemetic and motor depressant actions of WIN 55, 212-2. Eur J Pharmacol 2001;430:4958.
  • 14
    Darmani NA. Δ9-Tetrahydrocannabinol differentially suppresses cisplatin-induced emesis and indices of motor function via cannabinoid CB(1) receptors in the least shrew. Pharmacol Biochem Behav 2001;69:23949.
  • 15
    Javid FA, Wright C, Naylor RJ, Whittle BA. The role of cannabinoids in the mediation of motion sickness in Suncus murinus. FENS Abstr 2002;1:A142.14.
  • 17
    Hoyle CHV, Hill J, Sanger GJ, Andrews PLR. Analysis of pancreatic polypeptide cDNA from the house musk shrew, Suncus murinus, suggests a phylogenetically closer relationship with humans than for other small laboratory animal species. Regul Pept 2003;114:13744.
  • 16
    Colbert EH. Evolution of Vertebrates, 2nd edn. John Wiley & sons, New York, NY, 1969.
  • 18
    Hoyle CHV, Chakrabarti G, Pendleton NP, Andrews PLR. Neuromuscular transmission and innervation in the urinary bladder of the insectivore Suncus murinus. J Auton Nerv Syst 1998;69:318.
  • 19
    Javid FA, Naylor RJ. Variables of movement amplitude and frequency in the development of motion sickness in Suncus murinus. Pharmacol Biochem Behav 1999;64:11522.
  • 20
    Ueno S, Matsuki N, Saito H. Suncus murinus as a new experimental model for motion sickness. Life Sci 1988;43:41320.
  • 21
    Andrews P, Torii Y, Saito H, Matsuki N. The pharmacology of the emetic response to upper gastrointestinal tract stimulation in Suncus murinus. Eur J Pharmacol 1996;307:30513.
  • 22
    Andrews P, Dovey E, Hockaday J, Hoyle CH, Woods AJ, Matsuki N. The development of the emetic reflex in the house musk shrew, Suncus murinus. Brain Res Dev Brain Res 2000;121:2934.
  • 23
    Javid FA, Naylor RJ. The effect of serotonin and serotonin receptor antagonists on motion sickness in Suncus murinus. Pharmacol Biochem Behav 2002;73:97989.
  • 24
    Nakayama H, Yamakuni H, Higaki M, Ishikawa H, Imazumi K, Matsuo M et al . Antiemetic activity of FK1052, a 5-HT3- and 5-HT4-receptor antagonist, in Suncus murinus and ferrets. J Pharmacol Sci 2005;98:396403.
  • 25
    Darmani NA. The potent emetogenic effects of the endocannabinoid, 2-AG (2-arachidonoylglycerol) are blocked by Δ9-tetrahydrocannabinol and other cannabinoids. J Pharmacol Exp Ther 2002;300:3442.
  • 26
    Carlini EA, Cunha JM. Hypnotic and antiepileptic effects of cannabidiol. J Clin Pharmacol 1981;21:417S27S.
  • 27
    Kwiatkowska M, Parker LA, Burton P, Mechoulam R. A comparative analysis of the potential of cannabinoids and ondansetron to suppress cisplatin-induced emesis in the Suncus murinus (house musk shrew). Psychopharmacology (Berl) 2004;174:2549.
  • 28
    Billig I, Yates BJ, Rinaman L. Plasma hormone levels and central c-Fos expression in ferrets after systemic administration of cholecystokinin. Am J Physiol Regul Integr Comp Physiol 2001;281:R124355.
  • 29
    Leslie RA, Reynolds DJM. Functional anatomy of the emetic circuitry in the brainstem. In: BianchiAL, GrelotL, MillerAD, KingGL (eds). Mechanisms and Control of Emesis. Colloque INSERM, London, 1992;1927.
  • 30
    Lang IM, Sarna SK, Shaker R. Gastrointestinal motor and myoelectric correlates of motion sickness. Am J Physiol 1999;277:G64252.
  • 31
    Shannon HE, Martin WR, Silcox D. Lack of antiemetic effects of Δ9-tetrahydrocannabinol in apomorphine-induced emesis in the dog. Life Sci 1978;23:4953.
  • 32
    Loewe S. Studies on the pharmacology and acute toxicity of compounds with marihuana activity. J Pharmacol Exp Ther 1946;88:15461.
  • 33
    Feigenbaum JJ, Richmond SA, Weissman Y, Mechoulam R. Inhibition of cisplatin-induced emesis in the pigeon by a non-psychotropic synthetic cannabinoid. Eur J Pharmacol 1989;169:15965.
  • 34
    Darmani NA. Δ9-Tetrahydrocannabinol and synthetic cannabinoids prevent emesis produced by the cannabinoid CB(1) receptor antagonist/inverse agonist SR 141716A. Neuropsychopharmacology 2001;24:198203.
  • 35
    Darmani NA, Johnson JC. Central and peripheral mechanisms contribute to the antiemetic actions of Δ9-tetrahydrocannabinol against 5-hydroxytryptophan-induced emesis. Eur J Pharmacol 2004;488:20112.
  • 36
    Darmani NA, Crim JL. Δ9-Tetrahydrocannabinol differentially suppresses emesis versus enhanced locomotor activity produced by chemically diverse dopamine D2/D3 receptor agonists in the least shrew (Cryptotis parva). Pharmacol Biochem Behav 2005;80:3544.
  • 37
    Darmani NA, Janoyan JJ, Crim J, Ramirez J. Receptor mechanism and antiemetic activity of structurally-diverse cannabinoids against radiation-induced emesis in the least shrew. Eur J Pharmacol 2007;563:18796.
  • 38
    Kennedy RS, Graybiel A, McDonough RC, Beckwith FD. Symptomatology under storm conditions in the North Atlantic in control subjects and in persons with bilateral labyrinthine defects. Acta Otolaryngol 1968;66:53340.
  • 39
    Ashton JC, Zheng YW, Liu P, Darlington CL, Smith PF. Immunohistochemical characterisation and localisation of cannabinoid CB1 receptor protein in the rat vestibular nucleus complex and the effects of unilateral vestibular differentiation. Brain Research 2004;1021:26471.
  • 40
    Schlicker E, Kathmann M. Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol Sci 2001;22:56572.
  • 41
    Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA et al . International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 2002;54:161202.
  • 42
    Andrews PL, Okada F, Woods AJ, Hagiwara H, Kakaimoto S, Toyoda M et al . The emetic and anti-emetic effects of the capsaicin analogue resiniferatoxin in Suncus murinus, the house musk shrew. Br J Pharmacol 2000;130:124754.