SEARCH

SEARCH BY CITATION

References

  • 1
    Boudina S, Abel ED. Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord 2010;11:319.
  • 2
    Donahoe SM, Stewart GC, McCabe CH, Mohanavelu S, Murphy S, Cannon CP et al. Diabetes and mortality following acute coronary syndromes. JAMA 2007;298:76575.
  • 3
    Kasikcioglu HA, Cam N. A review of levosimendan in the treatment of heart failure. Vasc Health Risk Manag 2006;2:389400.
  • 4
    Innes CA, Wagstaff AJ. Levosimendan: a review of its use in the management of acute decompensated heart failure. Drugs 2003;63:265171.
  • 5
    Haikala H, Levijoki J, Lindén IB. Troponin C-mediated calcium sensitization by levosimendan accelerates the proportional development of isometric tension. J Mol Cell Cardiol 1995;27:215565.
  • 6
    Kaheinen P, Pollesello P, Levijoki J, Haikala H. Levosimendan increases diastolic coronary flow in isolated guinea pig heart by opening ATP-sensitive potassium channels. J Cardiovasc Pharmacol 2001;37:36774.
  • 7
    Vahtola E, Louhelainen M, Merasto S, Martonen E, Penttinen S, Aahos I et al. Forkhead class O transcription factor 3a activation and Sirtuin1 overexpression in the hypertrophied myocardium of the diabetic Goto-Kakizaki rat. J Hypertens 2008;26:33444.
  • 8
    Vahtola E, Louhelainen M, Forsten H, Merasto S, Raivio J, Kaheinen P, et al. Sirtuin1-p53, forkhead box O3a, p38 and post-infarct cardiac remodeling in the spontaneously diabetic Goto-Kakizaki rat. Cardiovasc Diabetol 2010;9:5.
  • 9
    Louhelainen M, Vahtola E, Forsten H, Merasto S, Kytö V, Finckenberg P et al. Oral levosimendan prevents postinfarct heart failure and cardiac remodeling in diabetic Goto-Kakizaki rats. J Hypertens 2009;27:2094107.
  • 10
    Cheng ZJ, Vaskonen T, Tikkanen I, Nurminen K, Ruskoaho H, Vapaatalo H et al. Endothelial dysfunction and salt-sensitive hypertension in spontaneously diabetic Goto-Kakizaki rats. Hypertension 2001;37:4339.
  • 11
    Louhelainen M, Merasto S, Finckenberg P, Vahtola E, Kaheinen P, Levijoki J et al. Effects of calcium sensitizer OR-1896, a metabolite of levosimendan, on post-infarct heart failure and cardiac remodelling in diabetic Goto-Kakizaki rats. Br J Pharmacol 2010;160:14252.
  • 12
    Parissis JT, Andreadou I, Markantonis SL, Bistola V, Louka A, Pyriochou A et al. Effects of levosimendan on circulating markers of oxidative and nitrosative stress in patients with advanced heart failure. Atherosclerosis 2007;195:E2105.
  • 13
    Maytin M, Colucci WS. Cardioprotection: a new paradigm in the management of acute heart failure syndromes. Am J Cardiol 2005;96:26G31G.
  • 14
    Louhelainen M, Vahtola E, Kaheinen P, Leskinen H, Merasto S, Kytö V. Effects of levosimendan on cardiac remodelling and cardiomyocyte apoptosis in hypertensive Dahl/Rapp rats. Br J Pharmacol 2007;150:85161.
  • 15
    Levijoki J, Pollesello P, Kaheinen P, Haikala H. Improved survival with simendan after experimental myocardial infarction in rats. Eur J Pharmacol 2001;419:2438.
  • 16
    Kivikko M, Lehtonen L, Colucci WS. Sustained haemodynamic effects of intravenous levosimendan. Circulation 2003;107:816.
  • 17
    Lakkisto P, Palojoki E, Bäcklund T, Saraste A, Tikkanen I, Voipio-Pulkki L-M et al. Expression of heme oxygenase-1 in response to myocardial infarction in rats. J Mol Cell Cardiol 2002;34:135765.
  • 18
    Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane C et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 2003;4:P3.
  • 19
    Grynberg A, Demaison L. Fatty acid oxidation in the heart. J Cardiovasc Pharmacol 1996;28:S117.
  • 20
    Vassort G, Turan B. Protective role of antioxidants in diabetes-induced cardiac dysfunction. Cardiovasc Toxicol 2010;10:7386.
  • 21
    Lopaschuk GD. Metabolic abnormalities in the diabetic heart. Heart Fail Rev 2002;7:14959.
  • 22
    Shioi T, McMullen JR, Kang PM, Douglas PS, Obata T, Franke TF et al. Akt/protein kinsae B promotes organ growth in transgenic mice. Mol Cell Biol 2002;22:2799809.
  • 23
    Niesen FH, Schultz L, Jadhav A, Bhatia C, Guo K, Maloney DJ et al. High-affinity inhibitors of human NAD-dependent 15-hydroxyprostaglandin dehydrogenase: mechanisms of inhibition and structure-activity relationships. PLoS ONE 2010;5:e13719.
  • 24
    Cho H, Tai HH. Thiazolidinediones as a novel class of NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase inhibitors. Arch Biochem Biophys 2002;405:24751.
  • 25
    Chen W, Li N, Chen T, Han Y, Li C, Wang Y et al. The lysosome-associated apoptosis-inducing protein containing the pleckstrin homology (PH) and FYVE domains (LAPF), representative of a novel family of PH and FYVE domain–containing proteins, induces caspase-independent apoptosis via the lysosomal-mitochondrial pathway. J Biol Chem 2005;280:4098595.
  • 26
    Ishizuka T, Fujimori I, Kato M, Noji-Sakikawa C, Saito M, Yoshigae Y et al. Human carboxymethylenebutenolidase as a bioactive hydrolase of olmesartan medoxomil in liver and intestine. J Biol Chem 2010;285:11892902.
  • 27
    Xu J, Christian B, Jump DB. Regulation of rat hepatic L-pyruvate kinase promoter composition and activity by glucose, n-3 polyunsaturated fatty acids, and peroxisome proliferators-activated receptor alpha-agonist. J Biol Chem 2006;281:1835162.
  • 28
    Yoo YA, Kim MJ, Park JK, Chung YM, Lee JH, Chi SG et al. Mitochondrial ribosomal protein L41 suppresses cell growth in association with p53 and p27Kip1. Mol Cell Biol 2005;25:660316.
  • 29
    Monge M, Colas E, Doll A, Gil-Moreno A, Castellvi J, Diaz B et al. Proteomic approach to ETV5 during endometrial carcinoma invasion reveals a link to oxidative stress. Carcinogenesis 2009;30:128897.
  • 30
    Sun HB, Yokota H, Chi XX, Xu ZC. Differential expression of neurexin mRNA in CA1 and CA3 hippocampal neurons in response to ischemic insult. Brain Res Mol Brain Res 2000;84:1469.
  • 31
    Jowsey PA, Doherty AJ, Rouse J. Human PTIP facilitates ATM-mediated activation of p53 and promotes cellular resistance to ionizing radiation. J Biol Chem 2004;279:555629.
  • 32
    Ferreira JC, Bacurau AV, Evangelista FS, Coelho MA, Oliveira EM, Casarini DE et al. The role of local and systemic renin angiotensin system activation in a genetic model of sympathetic hyperactivity-induced heart failure in mice. Am J Physiol Regul Integr Comp Physiol 2008;294:R2632.
  • 33
    Giani JF, Muñoz MC, Pons RA, Cao G, Tobili JE, Turyn D et al. Angiotensin-(1-7) reduces proteinuria and diminishes structural damage in renal tissue of stroke-prone spontaneously hypertensive rats. Am J Physiol Renal Physiol 2011;300:F27282.
  • 34
    Grobe JL, Mecca AP, Lingis M, Shenoy V, Bolton TA, Machado JM et al. Prevention of angiotensin II-induced cardiac remodelling by angiotensin-(1-7). Am J Physiol Heart Circ Physiol 2007;292:H73642.
  • 35
    Ferrario CM, Iyer SN. Angiotensin-(1-7): a bioactive fragment of the renin-angiotensin system. Regul Pept 1998;78:138.
  • 36
    Martelli AM, Bortul R, Tabellini G, Bareggi R, Manzoli L, Narducci P et al. Diacylglycerol kinases in nuclear lipid-dependent signal transduction pathways. Cell Mol Life Sci 2002;59:112937.
  • 37
    Caimmi PP, Molinari C, Uberti F, Micalizzi E, Valente G, Mary DA et al. Intracoronary levosimendan prevents myocardial ischemic damages and activates survival signalling through ATP-sensitive potassium channel and nitric oxide. Eur J Cardiothorac Surg 2011;39:e5967.
  • 38
    Uberti F, Caimmi PP, Molinari C, Mary D, Vacca G, Grossini E. Levosimendan modulates programmed forms of cell death through KATP channels and nitric oxide. J Cardiovasc Pharmacol 2011;57:24658.