• 1
    Maconochie M, Nonchev S, Morrison A, Krumlauf R. Hox genes in vertebrate development. Annu Rev Genet 1996; 30: 52956.
  • 2
    Kessel M, Gruss P. Murine developmental control genes. Science 1990; 249: 3749.
  • 3
    Duboule D, Dolle P. The structure and functional organization of the murine Hox gene family resembles that of Drosophila homeotic genes. EMBO J 1989; 8: 1497505.
  • 4
    Dolle P, Izpisua-Belmonte JC, Bonchonelli E, Duboule D. The hox 4.8 gene is localized at the ‘5-prime’ extremity of the hox 4 complex and is expressed in the most posterior parts of the body during development. Mech Dev 1991; 36: 313.
  • 5
    Wilkinson DG, Bhatt S, Cook M, Bonchonelli E, Krumlauf R. Segmental expression of hox 2 homeobox containing genes in the developing mouse hindbrain. Nature 1989; 341: 4059.
  • 6
    Pitera J, Smith VV, Milla PJ. Coordinated expression of 3′ hox genes during murine embryona gut development: an enteric Hox code. Gastroenterology 1999; 117: 133951.
  • 7
    Wolgemuth D, Behringer RR, Mostoller MP, Brinster RL, Palmiter RD. Transgenic mice overexpressing the mouse homoeobox-containing gene Hox-1.4 exhibit abnormal gut development. Nature 1989; 337: 4647.
  • 8
    Tennyson VM, Gershon MD, Sherman DL et al. Structural abnormalities associated with congenital megacolon in transgenic mice that overexpress the Hoxa-4 gene. Dev Dyn 1993; 198: 2853.
  • 9
    Aubin J, Dery U, Lemieux M, Chailler P, Jeannotte L. Stomach regional specification requires Hoxa5-driven mesenchymal-epithelial signaling. Development 2002; 129: 407587.
  • 10
    Kondo T, Dolle P, Zakany J, Duboule D. Function of posterior hoxD genes in the morphogenesis of the anal sphincter. Development 1996; 122: 26519.
  • 11
    Warot X, Fromental-Ramain C, Fraulob V, Chambon P, Dolle P. Gene dosage-dependent effects of the Hoxa-13 and Hoxd-13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts. Development 1997; 124: 478191.
  • 12
    Zakany J, Duboule D. Hox genes and the making of sphincters. Nature 1999; 401: 7612.
  • 13
    Roberts DJ, Smith DM, Goff DJ, Tabin CJ. Epithelial-mesenchymal signaling during the regionalization of the chick gut. Development 1998; 125: 2791801.
  • 14
    Tennyson VM, Gershon MD, Wade PR, Crotty DA, Wolgemuth DJ. Fetal development of the enteric nervous system of transgenic mice that overexpress the Hoxa-4 gene. Dev Dyn 1998; 211: 26991.
  • 15
    Le Douarin NM, Kalcheim C. The Neural Crest. Cambridge, UK: Cambridge University Press, 1999.
  • 16
    Yntema CL, Hammond WS. The origin of intrinsic ganglia of trunk viscera from vagal neural crest in the chick embryo. J Comp Neurol 1954; 101: 51542.
  • 17
    Yntema CL, Hammond WS. Experiments on the origin and development of the sacral autonomic nerves in the chick embryo. J Exp Zool 1955; 129: 375414.
  • 18
    Le Douarin NM, Teillet MA. The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morph 1973; 30: 3148.
  • 19
    Le Douarin NM, Teillet MA. Experimental analysis of the migration and differentiation of neuroblasts of the autonomic nervous system and of neurectodermal mesenchymal derivatives, using a biological cell marking technique. Dev Biol 1974; 41: 16284.
  • 20
    Burns AJ, Le Douarin NM. The sacral neural crest contributes neurons and glia to the post-umbilical gut: spatiotemporal analysis of the development of the enteric nervous system. Development 1998; 125: 433547.
  • 21
    Durbec PL, Larsson-Blomberg LB, Schuchardt A, Costantini F, Pachnis V. Common origin and developmental dependence on c-ret subsets of enteric and sympathetic neuroblasts. Development 1996; 122: 34958.
  • 22
    Gershon MD. Disorders of enteric neuronal development: insights from transgenic mice. Am J Physiol 1999; 40: G2627.
  • 23
    Newgreen DF, Young HM. Enteric nervous system: development and developmental disturbances − part 1. Pediatr Dev Pathol 2002; 5: 22447.
  • 24
    Newgreen DF, Young HM. Enteric nervous system: development and developmental disturbances − part 2. Pediatr Dev Pathol 2002; 5: 32949.
  • 25
    Manie S, Santoro M, Fusco A, Billaud M. The RET receptor: function in development and dysfunction in congenital malformation. Trends Genet 2001; 17: 5809.
  • 26
    Airaksinen MS, Titievsky A, Saarma M. GDNF family neurotrophic factor signaling: four masters, one servant? Mol Cell Neurosci 1999; 13: 31325.
  • 27
    Parisi MA, Kapur RP. Hirschsprung disease overview. Curr Opin Pediatr 2002; 12: 6107. GeneReviews at GeneTests-GeneClinics: Medical Genetics Information Resource (database online) Seattle: University of Washington, 1997–2002. Available at:
  • 28
    Schuchardt A, D'Agati V, Larsson BL, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 1994; 367: 3803.
  • 29
    Sanchez MP, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 1996; 382: 703.
  • 30
    Pichel JG, Shen L, Sheng HZ et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 1996; 382: 736.
  • 31
    Natarajan D, Marcos-Gutierrez C, Pachnis V, De Graaff E. Requirement of signalling by receptor tyrosine kinase RET for the directed migration of enteric nervous system progenitor cells during mammalian embryogenesis. Development 2002; 129: 515160.
  • 32
    Young HM, Hearn CJ, Farlie PG, Canty AJ, Thomas PQ, Newgreen DF. GDNF is a chemoattractant for enteric neural crest cells. Dev Biol 2001; 229: 50316.
  • 33
    Hearn CJ, Murphy M, Newgreen D. GDNF and ET-3 differentially modulate the numbers of avian enteric neural crest cells and enteric neurons in vitro. Dev Biol 1998; 197: 93105.
  • 34
    Gianino S, Grider JR, Cresswell J, Enomoto H, Heuckeroth RO. GDNF availability determines enteric neuron number by controlling precursor proliferation. Development 2003; 130: 218798.
  • 35
    De Graaff E, Srinivas S, Kilkenny C et al. Differential activities of the RET tyrosine kinase receptor isoforms during mammalian embryogenesis. Genes Dev 2001; 15: 243344.
  • 36
    Tsui-Pierchala BA, Ahrens RC, Crowder RJ, Milbrandt J, Johnson EM. The long and short isoforms of Ret function as independent signaling complexes. J Biol Chem 2002; 277: 3461825.
  • 37
    Nataf V, Lecoin L, Eichmann A, Le Douarin NM. Endothelin-B receptor is expressed by neural crest cells in the avian embryo. Proc Natl Acad Sci USA 1996; 93: 964550.
  • 38
    McCallion AS, Chakravarti A. EDNRB/EDN3 and Hirschsprung disease type II. Pigment Cell Res 2001; 14: 1619.
  • 39
    Nataf V, Amemiya A, Yanagisawa M, Le Douarin NM. The expression pattern of endothelin 3 in the avian embryo. Mech Dev 1998; 73: 21720.
  • 40
    Leibl MA, Ota T, Woodward MN et al. Expression of endothelin 3 by mesenchymal cells of embryonic mouse caecum. Gut 1999; 44: 24652.
  • 41
    Hosoda K, Hammer RE, Richardson JA et al. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce aganglionic megacolon associated with white-spotted coat color in mice. Cell 1994; 79: 126776.
  • 42
    Gaultier C, Dauger S, Simonneau M, Gallego J. Genes modulating chemical breathing control: lessons from mutant animals. Resp Physiol Neurobiol 2003; 136: 10514.
  • 43
    Wu JJ, Chen J-X, Rothman TP, Gershon MD. Inhibition of in vitro enteric neuronal development by endothelin-3: mediation by endothelin B receptors. Development 1999; 126: 116173.
  • 44
    Kapur RP, Yost C, Palmiter RD. A transgenic model for studying development of the enteric nervous system in normal and aganglionic mice. Development 1992; 116: 16775.
  • 45
    Shin MK, Levorse JM, Ingram RS, Tilghman SM. The temporal requirement for endothelin receptor-B signalling during neural crest development. Nature 1999; 402: 496501.
  • 46
    Lee H-O, Levorse JM, Shin MK. The endothelin receptor-B is required for the migration of neural crest-derived melanocyte and enteric neuron precursors. Dev Biol 2003; 259: 16275.
  • 47
    Gariepy CE, Williams SC, Richardson JA, Hammer RE, Yanagisawa M. Transgenic expression of the endothelin-B receptor prevents congenital intestinal aganglionosis in a rat model of Hirschsprung disease. J Clin Invest 1998; 102: 1092101.
  • 48
    Carrasquillo MM, McCallion AS, Puffenberger EG, Kashuk CS, Nouri N, Chakravarti A. Genome-wide association study and mouse model identify interaction between RET and ENDRB pathways in Hirschsprung disease. Nature Genet 2002; 32: 23744.
  • 49
    McCallion AS, Stames E, Conlon RA, Chakravarti A. Phenotypic variation in two-locus mouse models of Hirschsprung disease: tissue-specific interaction between Ret and Ednrb. Proc Natl Acad Sci USA 2003; 100: 182631.
  • 50
    Rothman TP, Goldowitz D, Gershon MD. Inhibition of migration of neural crest-derived cells by the abnormal mesenchyme of the presumptive aganglionic bowel of ls/ls mice: analysis with aggregation and interspecies chimeras. Dev Biol 1993; 159: 55973.
  • 51
    Burns AJ, Le Douarin NM. Enteric nervous system development: analysis of the selective developmental potentialities of vagal and sacral neural crest cells using quail-chick chimeras. Anat Rec 2001; 262: 1628.
  • 52
    Young HM, Jones BR, McKeown SJ. The projections of early enteric neurons are influenced by the direction of neural crest cell migration. J Neurosci 2002; 22: 600518.
  • 53
    Jiang Y, Liu M, Gershon MD. Netrins and DCC in the guidance of migrating neural crest-derived cells in the developing bowel and pancreas. Dev Biol 2003; 258: 36484.