SEARCH

SEARCH BY CITATION

Keywords:

  • enteric nervous system;
  • motor reflexes;
  • myenteric plexus;
  • neuromuscular transmission;
  • synaptic transmission

Abstract

The enteric nervous system regulates intestinal motility. It contains intrinsic sensory neurones, several types of interneurones and excitatory and inhibitory motor neurones. This review summarizes our knowledge of motor neurones and interneurones in simple motility reflex pathways (ascending and descending excitation, descending inhibition) and it focuses on guinea-pig ileum. Excitatory circular muscle motor neurones contain choline acetyltransferase (ChAT) and tachykinins and project orally 0.5–10 mm. They transmit via muscarinic acetylcholine receptors and tachykinins acting at NK1 and NK2 receptors. Inhibitory circular muscle motor neurones contain nitric oxide synthase (NOS), vasoactive intestinal peptide (VIP) and pituitary adenylyl cyclase activating peptide (PACAP), project anally up to 25 mm and transmit via ATP, nitric oxide and/or VIP. Ascending interneurones project up to 10 mm orally and contain ChAT and tachykinins. They transmit to each other via ACh at nicotinic receptors (nAChR), but to excitatory motor neurones via both nAChR and NK3 receptors. There are at least three types of descending interneurones and one transmits to inhibitory motor neurones via ATP acting at P2X receptors. NOS-containing descending interneurones receive input via P2Y receptors from other interneurones. Transmission to and from the other descending interneurones (ChAT/5-HT, ChAT/somatostatin) is yet to be characterized.