• 1
    Kurz A, Sessler D. Opioid-induced bowel dysfunction: pathophysiology and potential new therapies. Drugs 2003; 63: 64971.
  • 2
    Kromer W. Endogenous and exogenous opioids in the control of gastrointestinal motility and secretion. Pharmacol Rev 1988; 40: 12162.
  • 3
    Sternini C, Patierno S, Selmer IS, Kirchgessner A. The opioid system in the gastrointestinal tract. Neurogast Mot 2004; 16 (Suppl 1): 316.
  • 4
    Wood JD, Galligan JJ. Function of opioids in the enteric nervous system. Neurogast Mot 2004; 16 (Suppl 1): 1728.
  • 5
    Sanger GJ, Tuladhar BR. The role of endogenous opioids in the control of gastrointestinal motility: predictions from in vitro modelling. Neurogast Mot 2004; 16 (Suppl 1): 3845.
  • 6
    Osinski MA, Pampusch MS, Murtaugh MP, Brown DR. Cloning, expression and functional role of a nociceptin/orphanin FQ receptor in the porcine gastrointestinal tract. Eur J Pharmacol 1999; 365: 2819.DOI: 10.1016/S0014-2999(98)00869-3
  • 7
    Yazdani A, Takahashi T, Bagnol D, Watson SJ, Owyang C. Functional significance of a newly discovered neuropeptide, orphanin FQ, in rat gastrointestinal motility. Gastroenterology 1999; 116: 3845.
  • 8
    O'Donnell AM, Ellis LM, Riedl MS, Elde RP, Mawe GM. Distribution and chemical coding of orphanin FQ/nociceptin-immunoreactive neurons in the myenteric plexus of guinea pig intestines and sphincter of Oddi. J Comp Neurol 2001; 430: 111.DOI: 10.1002/1096-9861(20010129)430:1<1::AID-CNE1011>3.0.CO;2-H
  • 9
    Calo G, Guerrini R, Rizzi A, Salvadori S, Regoli D. Pharmacology of nociceptin and its receptor: a novel therapeutic target. Br J Pharmacol 2000; 129: 126183.
  • 10
    Trendelenburg P. [Physiological and pharmacological experiments about the small intestine peristaltic]. Naunyn-Schmiedebergs Arch Exp Pathol Pharmakol 1917; 81: 55129.
  • 11
    Bueno L, Fioramonti J. Action of opiates on gastrointestinal function. Baillieres Clin Gastroenterol 1988; 2: 12339.
  • 12
    Tonini M, Waterman SA, Candura SM, Coccini T, Costa M. Sites of action of morphine on the ascending excitatory reflex in the guinea-pig small intestine. Neurosci Lett 1992; 144: 1958.DOI: 10.1016/0304-3940(92)90748-V
  • 13
    Allescher HD, Storr M, Brechmann C, Hahn A, Schusdziarra V. Modulatory effect of endogenous and exogenous opioids on the excitatory reflex pathway of the rat ileum. Neuropeptides 2000; 34: 628.DOI: 10.1054/npep.1999.0789
  • 14
    Kojima Y, Takahashi T, Fujina M, Owyang C. Inhibition of cholinergic transmission by opiates in ileal myenteric plexus is mediated by kappa receptor. Involvement of regulatory inhibitory G protein and calcium N-channels. J Pharmacol Exp Ther 1994; 268: 96570.
  • 15
    Hoyle CH, Kamm MA, Burnstock G, Lennard-Jones JE. Enkephalins modulate inhibitory neuromuscular transmission in circular muscle of human colon via delta-opioid receptors. J Physiol 1990; 431: 46578.
  • 16
    Zagorodnyuk V, Maggi CA. Electrophysiological evidence for different release mechanism of ATP and NO as inhibitory NANC transmitters in guinea-pig colon. Br J Pharmacol 1994; 112: 107782.
  • 17
    Taniguchi H, Yomota E, Nogi K, Onoda Y, Ikezawa K. The effect of nociceptin, an endogenous ligand for the ORL1 receptor, on rat colonic contraction and transit. Eur J Pharmacol 1998; 353: 26571.DOI: 10.1016/S0014-2999(98)00411-7
  • 18
    Awouters F, Megens A, Verlinden M, Schuurkes J, Niemegeers C, Janssen PA. Loperamide. Survey of studies on mechanism of its antidiarrheal activity. Dig Dis Sci 1993; 38: 97795.
  • 19
    Yates DA, Santos J, Söderholm J, Perdue M. Adaptation of stress-induced mucosal pathophysiology in rat colon involves opioid pathways. Am J Physiol Gastrointest Liver Physiol 2001; 281: G1248.
  • 20
    Puig MM, Pol O. Peripheral effects of opioids in a model of chronic intestinal inflammation in mice. J Pharmacol Exp Ther 1998; 287: 106875.
  • 21
    Pol O, Alameda F, Puig MM. Inflammation enhances µ-opioid receptor transcription and expression in mice intestine. J Pharmacol Exp Ther 2001; 60: 8949.
  • 22
    Pol O, Valle L, Puig MM. Antisense oligodeoxynucleotides to mu- and delta-opioid receptor mRNA block the enhanced effects of opioids during intestinal inflammation. Eur J Pharmacol 2001; 438: 12736.DOI: 10.1016/S0014-2999(01)01281-X
  • 23
    Pol O, Palacio JR, Puig MM. The expression of delta- and kappa-opioid receptor is enhanced during intestinal inflammation in mice. J Pharmacol Exp Ther 2003; 306: 45562.DOI: 10.1124/jpet.103.049346
  • 24
    Danzebrink RM, Green SA, Gebhart GF. Spinal mu and delta, but not kappa, opioid-receptor agonists attenuate responses to noxious colorectal distension in the rat. Pain 1995; 63: 3947.DOI: 10.1016/0304-3959(94)00275-J
  • 25
    Zhuo M, Gebhart GF. Facilitation and attenuation of a visceral nociceptive reflex from the rostroventral medulla in the rat. J Neurophysiol 2002; 124: 100719.
  • 26
    Friedrich AE, Gebhart GF. Modulation of visceral hyperalgesia by morphine and cholecystokinin from the rat rostroventral medial medulla. Pain 2003; 104: 93101.DOI: 10.1016/S0304-3959(02)00469-4
  • 27
    Gebhart GF, Su X, Joshi S, Ozaki N, Sengupta JN. Peripheral opioid modulation of visceral pain. Ann NY Acad Sci 2000; 909: 4150.
  • 28
    Harada Y, Nishioka K, Kitahata LM, Kishikawa K, Collins JG. Visceral antinociceptive effects of spinal clonidine combined with morphine, [D-Pen2, D-Pen5] enkephalin, or U50,488H. Anesthesiology 1995; 83: 34452.DOI: 10.1097/00000542-199508000-00015
  • 29
    Harada Y, Nishioka K, Kitahata LM, Nakatani K, Collins JG. Contrasting actions of intrathecal U50,488H, morphine, or [D-Pen2, D-Pen5] enkephalin or intravenous U50,488H on the visceromotor response to colorectal distension in the rat. Anesthesiology, 1995; 83: 33643.DOI: 10.1097/00000542-199508000-00014
  • 30
    Burton MB, Gebhart GF. Effects of kappa-opioid receptor agonists on responses to colorectal distension in rats with and without acute colonic inflammation. J Pharmacol Exp Ther 1998; 285: 70715.
  • 31
    Junien JL, Rivière P. Review article: the hypersensitive gut − peripheral kappa agonists as a new pharmacological approach. Aliment Pharmacol Ther 1995; 9: 11726.
  • 32
    Friese N, Chevalier E, Angel F et al. Reversal by kappa-agonists of peritoneal irritation-induced ileus and visceral pain in rats. Life Sci 1997; 60: 62534.DOI: 10.1016/S0024-3205(96)00647-9
  • 33
    Rivière PJM, Junien J-L. Opioid receptors: targets for new gastrointestinal drug development. In: GaginellaTS, GugliettaA, eds. Drug Development −Molecular Targets for GI Diseases . Totowa, NJ : Humana Press, 2000: 20338.
  • 34
    Sengupta JN, Su X, Gebhart GF. κ, but not µ or δ, opioids attenuate responses to distention of afferent fibers innervating the rat colon. Gastroenterology 1996; 111: 96880.
  • 35
    Su X, Sengupta JN, Gebhart GF. Effects of kappa opioid receptor-selective agonists on responses of pelvic nerve afferents to noxious colorectal distension. J Neurophysiol 1997; 78: 100312.
  • 36
    Su X, Joshi SK, Kardos S, Gebhart GF. Sodium channel blocking actions of the κ-opioid receptor agonist U50,488 contribute to its visceral antinociceptive effects. J Neurophysiol 2002; 87: 12719.
  • 37
    Gebhart GF. JJ Bonica Lecture − 2000. Physiology, pathophysiology, and pharmacology of visceral pain. Reg Anesth Pain Med 2000; 25: 6328.
  • 38
    Delvaux M, Louvel D, Lagier E, Scherrer B, Abitbol JL, Frexinos J. The kappa agonist fedotozine relieves hypersensitivity to colonic distention in patients with irritable bowel syndrome. Gastroenterology 1999; 116: 3845.
  • 39
    Gottschlich R, Barber A, Bartoszyk GD, Seyfried CA. The peripherally acting κ-opiate agonist EMD 61753 and analogues: opioid activity versus peripheral selectivity. Drugs Exp Clin Res 1995; 21: 1714.
  • 40
    Barber A, Bartoszyk GD, Bender HM et al. A pharmacological profile of the novel, peripherally-selective κ-opioid receptor agonist, EMD 61753. Br J Pharmacol 1994; 113: 131727.
  • 41
    Sengupta JN, Snider A, Su X, Gebhart GF. Effects of kappa opioids in the inflamed rat colon. Pain 1999; 79: 17585.
  • 42
    Ozaki N, Sengupta JN, Gebhart GF. Differential effects of mu-, delta- and kappa-opioid receptor agonists on mechanosensitive gastric vagal afferent fibers in the rat. J Neurophysiol 2000; 83: 220916.
  • 43
    Delgado-Aros S, Chial HJ, Camilleri M et al. Effects of a κ-opioid agonist, asimadoline, on satiation and GI motor and sensory functions in humans. Am J Physiol Gastrointest Liver Physiol 2003; 284: G55866.
  • 44
    Joshi SK, Lamb K, Bielefeldt K, Gebhart GF. Arylacetamide κ-opioid receptor agonists produce a tonic- and use-dependent block of tetrodotoxin-sensitive and -resistant sodium currents in colon sensory neurons. J Pharmacol Exp Ther 2003; 307: 36772.
  • 45
    Brown DR. The use and misuse of quaternary ammonium opiate antagonists. Trends Pharmacol Sci 1985; 6: 3945.
  • 46
    Brown DR, Goldberg LI. The use of quaternary narcotic antagonists in opiate research. Neuropharmacology 1985; 24: 18191.
  • 47
    Brown DR, Robertson MJ, Goldberg LI. Reversal of morphine-induced catalepsy in the rat by narcotic antagonists and their quaternary derivatives. Neuropharmacol 1983; 22: 31721.
  • 48
    Foss JF. A review of the potential role of methylnaltrexone in opioid bowel dysfunction. Am J Surg 2001; 182: 19S26S.
  • 49
    Gmerek DE, Cowan A, Woods JH. Independent central and peripheral mediation of morphine-induced inhibition of gastrointestinal transit in rats. J Pharmacol Exp Ther 1986; 236: 813.
  • 50
    Kotake AN, Kuwahara SK, Burton E, McCoy CE, Goldberg LI. Variations in demethylation of N-methylnaltrexone in mice, rats, dogs, and humans. Xenobiotica 1989; 19: 124754.
  • 51
    Locke KW, Holtzman SG. Characterization of the discriminative stimulus effects of centrally administered morphine in the rat. Psychopharmacol 1985; 87: 16.
  • 52
    Mickley GA, Stevens KE, Galbraith JA. Quaternary naltrexone reverses morphine-induced behaviors. Physiol Behav 1985; 35: 24953.
  • 53
    Russell J, Bass P, Goldberg LI, Schuster CR, Merz H. Antagonism of gut, but not central effects of morphine with quaternary narcotic antagonists. Eur J Pharamacol 1982; 78: 25561.
  • 54
    Yuan C-S, Foss JF. Methylnaltrexone: investigation of clinical applications. Drug Dev Res 2000; 50: 13341.
  • 55
    Schmidt WK. Alvimopan (ADL 8–2698) is a novel peripheral opioid antagonist. Am J Surg 2001; 182 (Suppl. 5A): 27S38S.
  • 56
    Zimmerman DM, Gidda JS, Cantrell BE, Schoepp DD, Johnson BG, Leander JD. Discovery of a potent, peripherally selective trans-3,4-dimethyl-4-(3-hydroxyphenyl) piperidine opioid antagonist for the treatment of gastrointestinal motility disorders. J Med Chem 1994a; 37: 22625.
  • 57
    Zimmerman DM, Gidda JS, Cantrell BE et al. LY246736 dihydrate, µ opioid receptor antagonist. Drugs Future 1994b; 19: 107883.
  • 58
    Cassel JA, Daubert JD, DeHaven RN. Characterization of [3H]alvimopan binding to the cloned human µ opioid receptor. Soc Neurosci Abstract 2002; 28: 554.7.
  • 59
    Daubert JD, Cassel JA, Guo D et al. Inhibition of opioid receptor-mediated [35S]GTPγS binding by ADL 8–2698, a potent opioid receptor antagonist. Soc Neurosci Abstract 2000; 26: 238.13.
  • 60
    Long SL, Little PJ, Gaul F, Guo D, Koblish M, DeHaven-Hudkins DL. Effects of novel µ opioid antagonists on gastrointestinal (GI) transit in mice. Soc Neurosci Abstract 1999; 25: 1706.
  • 61
    Little PJ, Long SL, Gottshall SL, Koblish M, Guo D, DeHaven-Hudkins DL. Pharmacological profile of ADL 8–2698, a peripherally restricted opioid receptor antagonist. International Narcotics Research Conference, Seattle, WA, July 15–20, 2000.
  • 62
    Little PJ, Koblish M, DeHaven-Hudkins DL, Pietras MR, Cowan A. ADL 8–2698, a GI restricted opioid antagonist, blocks the antisecretory and colorectal transit effects of morphine and loperamide. Soc Neurosci Abstract 2001; 27: 907.2.
  • 63
    Koblish M, Little PJ, Sharpless LC, DeHaven-Hudkins DL. Behavioral profile of ADL 8–2698, a novel GI-restricted µ opioid receptor antagonist. Soc Neurosci Abstract 2001; 27: 907.3.
  • 64
    Grundy D, Booth CE, Winchester W, Hicks GA. Peripheral opiate action on afferent fibres supplying the rat intestine. Neurogast Mot 2004;16(Suppl. 2): 2937.
  • 65
    Zollner C, Shaqura MA, Bopaiah CP, Mousa S, Stein C, Schafer M. Painful inflammation-induced increase in mu-opioid receptor binding and G-protein coupling in primary afferent neurons. Mol Pharmacol 2003; 64: 20210.
  • 66
    Callaghan JT, Cerimele B, Nowak TV, DeLong A, Myhart E, Oldham S. Effect of the opioid antagonist LY 246736 on gastrointestinal transit in human subjects. Gastroenterology 1998; 114: G3015.
  • 67
    Liu SS, Hodgson PS, Carpenter RL, Fricke JR Jr. ADL 8–2698, a trans-3,4-dimethyl-4-(3-hydroxyphenyl) piperidine, prevents gastrointestinal effects of intravenous morphine without affecting analgesia. Clin Pharmacol Ther 2000; 68: 6671.
  • 68
    Taguchi A, Sharma N, Saleem RM, Sessler DI, Carpenter RL, Seyedsadr M, Kurz A. Selective postoperative inhibition of gastrointestinal opioid receptors. N Engl J Med 2001; 345: 93540.