Get access

Internal Pudendal Artery from Type 2 Diabetic Female Rats Demonstrate Elevated Endothelin-1-Mediated Constriction


Kyan Allahdadi, PhD, Department of Physiology, Medical College of Georgia, 1120 15th Street, CA 3139, Augusta, GA 30912, USA. Tel: (706) 721 8103; Fax: (706) 721 7299; E-mail:;


Introduction.  Diabetes is a risk factor for female sexual dysfunction (FSD). FSD has several etiologies, including a vasculogenic component that could be exacerbated in diabetes. The internal pudendal artery supplies blood to the vagina and clitoris and diabetes-associated functional abnormalities in this vascular bed may contribute to FSD.

Aim.  The Goto-Kakizaki (GK) rat is a non-obese model of type 2 diabetes with elevated endothelin-1 (ET-1) activity. We hypothesize that female GK rats have diminished sexual responses and that the internal pudendal arteries demonstrate increased ET-1 constrictor sensitivity.

Methods.  Female Wistar and GK rats were used. Apomorphine (APO)-mediated genital vasocongestive arousal (GVA) was measured. Functional contraction (ET-1 and phenylephrine) and relaxation (acetylcholine, ACh) in the presence or absence of the ETA receptor antagonist (ETAR; atrasentan) or Rho-kinase inhibitor (Y-27632) were assessed in the internal pudendal and mesenteric arteries. Protein expression of ET-1 and RhoA/Rho-kinase signaling pathway was determined in the internal pudendal and mesenteric arteries.

Main Outcome Measure.  APO-mediated GVAs; contraction and relaxation of internal pudendal and mesenteric arteries; ET-1/RhoA/Rho-kinase protein expression.

Results.  GK rats demonstrated no APO-induced GVAs. Internal pudendal arteries, but not mesenteric arteries, from GK rats exhibited greater contractile sensitivity to ET-1 compared with Wistar arteries. ETAR blockade reduced ET-1-mediated constriction in GK internal pudendal and mesenteric arteries. Rho-kinase inhibition reduced ET-1-mediated constriction of GK internal pudendal but not mesenteric arteries; however, it had no effect on arteries from Wistar rats. RhoA protein expression was elevated in GK internal pudendal arteries. At the highest concentrations, ACh-mediated relaxation was greater in the GK internal pudendal artery; however, no difference was observed in the mesenteric artery.

Conclusions.  Female GK rats demonstrate decreased sexual responses that may be because of increased constrictor sensitivity to the ET-1/RhoA/Rho-kinase signaling in the internal pudendal artery. Allahdadi KJ, Hannan JL, Ergul A, Tostes RC, and Webb RC. Internal pudendal artery from type 2 diabetic female rats demonstrate elevated endothelin-1-mediated constriction. J Sex Med 2011;8:2472–2483.