• assemblage;
  • biodiversity;
  • herpetofauna;
  • lizards;
  • microhabitat;
  • regrowth forest;
  • snakes;
  • vegetation gradient


A widely accepted biodiversity crisis in the tropics has been recently challenged by claims that secondary forests will gradually restore biodiversity losses. This prediction was examined for the herpetofauna in Quintana Roo, Mexico. Quantitative sampling (108 transects) of reptiles was undertaken monthly (January–September 2004) along a vegetation gradient covering induced grasslands, and regrowth and primary rain forests. A total of 35 species was found, 14 being present in and five showing dependence on mature forests. Lizards contributed > 90 per cent of the individuals observed. Reptile abundance and snake species richness was highest in primary forests, even though the lower abundance and richness did not differ between regrowth forest and induced grasslands. Multivariate ordinations and ANOSIM tests displayed clear differences in assemblage structure among vegetation types, mainly caused by contrasting abundances of lizard species having distinctive arboreal or terrestrial habits. There was no evidence that snake assemblages differed between secondary forests and induced grasslands. Microhabitat availability had a key role in shaping species composition through the vegetation gradient. Our results dismiss the hypothesis that secondary forests can act as reservoirs of primary forest reptile diversity on the basis that many taxa depend largely on habitat quality and have specialized life-history traits, and that biological succession does not guarantee the recovery of assemblage complexity.