Get access

Habitat Associations and Community Structure of Dipterocarps in Response to Environment and Soil Conditions in Brunei Darussalam, Northwest Borneo


Corresponding author; current address: Biology Programme, Faculty of Science, Universiti Brunei Darussalam, Jln Tungku Link, BE 1410, Brunei Darussalam; e-mail:


Plant habitat associations are well documented in Bornean lowland tropical forests, but few studies contrast the prevalence of associations across sites. We examined habitat associations and community composition of Dipterocarpaceae trees in two contrasting Bornean lowland mixed dipterocarp forests separated by approximately 100 km: Andulau (uniform topography, lower altitudinal range, sandy soils) and Belalong (highly dissected topography, higher altitudinal range, clay-rich soils). Dipterocarpaceae trees ≥ 1 cm diameter at breast height (dbh) were censused in 20-m wide belt transects established along topographic gradients at each site. Dipterocarp density, evenness, species richness, and diversity were significantly higher at Andulau than Belalong. Significant site associations (with either Andulau or Belalong) were detected for 19 (52%) of the 37 dipterocarp species tested. Dipterocarpaceae community composition at Belalong correlated with soil nutrient concentrations as well as measures of vegetation and topographic structure, but community composition at Andulau correlated with fewer habitat variables. Within each site, dipterocarp density, species richness, and diversity were consistently higher on ridges than in slopes and valleys. Significant within-site associations to topographic habitats were less common at Andulau (10% of species tested) than at Belalong (15%). We conclude that edaphic and other environmental factors influence dipterocarp community composition at a local scale, and are more important drivers of community structure in the more variable environment at Belalong. Species richness and diversity of dipterocarps on small plots, however, were higher at Andulau, suggesting that factors other than environmental heterogeneity contribute to contrasts in dipterocarp tree species richness at small scales.