SEARCH

SEARCH BY CITATION

References

  • Abeles FB, Biles CL, Dunn LJ (1989). Hormonal regulation and distribution of peroxidase isoenzymes in the Cucurbitaceae. Plant Physiol. 91, 16091612.
  • Abeles FB, Morgan PW, Saltveit MEJr (1992). Ethylene in Plant Biology, 2nd edn. Academic Press, San Diego .
  • Aloni R (1979). Role of auxin and gibberellin in differentiation of primary phloem fibers. Plant Physiol. 63, 609614.
  • Aloni R (1988). Vascular differentiation within the plant. In: Roberts, LW, Gahan, PB, Aloni, R, eds. Vascular Differentiation and Plant Growth Regulators. Springer-Verlag, New York pp. 3962.
  • Aloni R (1991). Wood formation in deciduous hardwood trees. In: Raghavendra, AS, ed. Physiology of Trees. John Wiley & Sons, Chichester pp. 175197.
  • Andersson-Gunnerås S, Hellgren JM, Björklund S, Regan S, Moritz T, Sundberg B (2003). Asymmetric expression of a poplar ACC oxidase controls ethylene production during gravitational induction of tension wood. Plant J. 34, 339349.
  • Archer RR (1987). Growth Stresses and Strains in Trees (Springer series in wood science). Springer-Verlag, New York .
  • Baba K (2003). Structure and formation of reaction wood. In: Fukushima, K, Funada, R, Sugiyama, J, Takabe, K, Umezawa, T, Yamamoto, H, eds. Secondary Xylem Formation—Introduction to Biomass Science. Kaiseisha Press, Otsu . pp. 7680 (in Japanese).
  • Baba K, Adachi K, Take T, Yokoyama T, Ito T, Nakamura T (1995). Induction of tension wood in GA3-treated branches of the weeping type of Japanese cherry, Prunus spachiana. Plant Cell Physiol. 36, 983988.
  • Barker JE (1979). Growth and wood properties of Pinus radiata in relation to applied ethylene. N. Z. J. For. Sci. 9, 1519.
  • Bentum ALK, Côté WAJr, Day AC, Timell TE (1969). Distribution of lignin in normal and tension wood. Wood Sci. Technol. 3, 218231.
  • Berthier S, Stokes A (2005). Righting response of artificially inclined maritime pine (Pinus pinaster) saplings to wind loading. Tree Physiol. 26, 7379.
  • Bevan M, Northcote DH (1979). The interaction of auxin and cytokinin in the induction of phenylalanine ammonia-lyase in suspension cultures of Phaseolus vulgaris. Planta 147, 7781.
  • Blake TJ, Pharis RP, Reid DM (1980). Ethylene, gibberellins, auxin and the apical control of branch angle in a conifer, Cupressus arizonica. Planta 148, 6468.
  • Blum W (1971). Über die experimentelle Beeinflussung der Reaktionsholtzbildung bei Fichten und Pappeln. Ber. Schweiz. Bot. Ges. 80, 225251.
  • Boyd JD (1976). Basic cause of differentiation of tension wood and compression wood. Part I, II. Drev. Vysk. 21, 5766, 133–144.
  • Boyd JD (1977). Basic cause of differentiation of tension wood and compression wood. Aust. For. Res. 7, 121143.
  • Brown KM, Leopold AC (1973). Ethylene and the regulation of growth in pine. Can. J. For. Res. 3, 143145.
  • Browning G, Wignall TA (1987). Identification and quantification of indole-3-acetic and abscisic acids in the cambial region of Quercus robur by combined gas chromatography mass spectrometry. Tree Physiol. 3, 235246.
  • Burg SP, Burg EA (1967). Inhibition of poplar auxin transport by ethylene. Plant Physiol. 42, 12241228.
  • Casperson G (1965). Über endogene faktoren der reaktionsholzbildung I. Wuchsstoffapplikation an kastanienepikotylen. Planta 64, 225240.
  • Casperson G (1968). Wirkung von wuchs- und hemmstoffen auf die kambiumtätigkeit und reaktionsholzbildung. Physiol. Plant 21, 13121321.
  • Chaffey N (2002). Wood Formation in Trees: Cell and Molecular Biology Techniques. Taylor & Francis Books, London .
  • Chen R, Rosen E, Masson PH (1999). Gravitropism in high plants. Plant Physiol. 120, 343350.
  • Cholodny N (1926). Beiträge zur analyse der geotropischen reaction. Jahrb. Wiss. Bot. 65, 447459.
  • Cieslar A (1896). Das rothholz der Fichte. Cbl. Ges. Forstwes. 22, 149165.
  • Cronshaw J, Morey PR (1965). Induction of tension wood by 2,3,5-tri-iodobenzoic acid. Nature 205, 816818.
  • Cronshaw J, Morey PR (1968). The effect of plant growth substances on the development of tension wood in horizontally inclined stems of Acer rubrum seedlings. Protoplasma 65, 379391.
  • Cui KM, Hu ZH (2002). Advancement of structural botany in the past fifty years in China. Acta Bot. Sin. 44, 10431067.
  • Davies PJ (1995). The plant hormones: Their nature, occurrence and functions. In: Davies, PJ, ed. Plant Hormones, 2nd edn. Kluwer Academic Publishers, Dordrecht . pp. 112.
  • Denhard B, Feucht B (1971). Zur reaktionsholzbildung bei Prunus avium. Holzforschung 25, 169174.
  • Digby J, Wareing PF (1966). The effect of applied growth hormones on cambial division and the differentiation of the cambial derivatives. Ann. Bot. 30, 539548.
  • Dolan L (1997). The role of ethylene in the development of plant form. J. Exp. Bot. 48, 201210.
  • Du S, Sugano M, Tsushima M, Nakamura T, Yamamoto F (2004a). Endogenous indole-3-acetic acid and ethylene evolution in tilted Metasequoia glyptostroboides stems in relation to compression-wood formation. J. Plant Res. 117, 171174.
  • Du S, Uno H, Yamamoto F (2004b). Roles of auxin and gibberellin in gravity-induced tension wood formation in Aesculus turbinata seedlings. IAWA J. 25, 337347.
  • Du S, Yamamoto F (2003a). A study on the role of calcium in xylem development and compression wood formation in Taxodium distichum seedlings. IAWA J. 24, 7585.
  • Du S, Yamamoto F (2003b). Ethylene evolution changes in the stems of Metasequoia glyptostroboides and Aesculus turbinata seedlings in relation to gravity-induced reaction wood formation. Trees 17, 522528.
  • Eklund L (1991). Relations between indoleacetic acid, calcium ions and ethylene in the regulation of growth and cell wall composition in Picea abies. J. Exp. Bot. 42, 785789.
  • Eklund L, Klintborg A (2000). Ethylene, oxygen and carbon dioxide in woody stems during growth and dormancy. In: Savidge, RA, Barnett, JR, Napier, R, eds. Cell and Molecular Biology of Wood Formation. Bios Scientific, London pp. 4356.
  • Eklund L, Little CHA (1996). Laterally applied Ethrel causes local increases in radial growth and indole-3-acetic acid concentration in Abies balsamea shoots. Tree Physiol. 16, 509513.
  • Eklund L, Little CHA (2000). Transport of [1-14C]-indole-3-acetic acid in Abies balsamea shoots ringed with Ethrel. Trees 15, 5862.
  • Fisher JB, Stevenson JW (1981). Occurrence of reaction wood in branches of dicotyledons and its role in tree architecture. Bot. Gaz. 142, 8295.
  • Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002). Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415, 806809.
  • Funada R, Kubo T, Tabuchi M, Sugiyama T, Fushitani M (2001). Seasonal variations in endogenous indole-3-acetic acid and abscisic acid in the cambial region of Pinus densiflora Sieb. et Zucc. stems in relation to earlywood-latewood transition and cessation of tracheid production. Holzforschung 55, 128134.
  • Funada R, Mizukami E, Kubo T, Fushitani M, Sugiyama T (1990). Distribution of indole-3-acetic acid and compression wood formation in the stems of inclined Cryptomeria japonica. Holzforschung 44, 331334.
  • Funada R, Sugiyama T, Kubo T, Fushitani M (1992). Identification of endogenous cytokinins in the cambial region of Cryptomeria japonica stem. Mokuzai Gakkaishi 38, 317320.
  • Hartig R (1896). Das rothholz der Fichte. Forstl Naturwiss. Z. 5, 96109, 157–169.
  • Hartig R (1901). Holzuntersuchungen. Altes und Neues. Julius Springer, Berlin .
  • Hartmann F (1932). Untersuchungen über ursachen und gesetzmäßigkeit exzentrischen dikkenwachstums bei nadel- und laubbäumen. Forstwiss. Cbl. 54, 497517, 547–566, 581–590, 622–634.
  • Hartmann F (1942). Das staatische Wuchsgesetz bei Nadel- und Laubbäumen. Neue Erkenntnis über Ursache, Gesetzmäßigkeit und Sinn des Reaktionsholzes. Springer, Wien .
  • Haygreen JG, Bowyer JL (1996). Forest Products and Wood Science, 3rd edn. IOWA State University Press, Ames Iowa .
  • Hellgren JM, Olofsson K, Sundberg B (2004). Patterns of auxin distribution during gravitational induction of reaction wood in popular and pine. Plant Physiol. 135, 212220.
  • Hennion S, Little CHA, Hartmann C (1992). Activities of enzymes involved in lignification during the postharvest storage of etiolated asparagus spears. Physiol. Plant 86, 474478.
  • Hoson T, Saito Y, Soga K, Wakabayashi K (2005). Signal perception, transduction, and response in gravity resistance. Another graviresponse in plants. Adv. Space Res. 36, 11961202.
  • Ingemarsson BSM, Eklund L, Eliasson L (1991). Ethylene effects on cambial activity and cell wall formation in hypocotyls of Picea abies seedlings. Physiol. Plant 82, 219224.
  • Jaccard P (1919). Nouvelles Recherches sur L'accroissement en Épaisseur des Arbres. Foundation Schnyder von Wartensee, Zürich .
  • Jaccard P (1938). Exzentrisches dickenwachstum und anatomisch-histologische differenzierung des holzes. Ber. Schweiz. Bot. Ges. 48, 491537.
  • Jaccard P (1939). Tropisme et bois de réaction provoqués par la force centrifuge. Ber. Schweiz. Bot. Ges. 49, 135147.
  • Jiang S, Furukawa I, Honma T, Mori M, Nakamura T, Yamamoto F (1998a). Effects of applied gibberellins and uniconazole-P on gravitropism and xylem formation in horizontally positioned Fraxinus mandshurica seedlings. J. Wood Sci. 44, 385391.
  • Jiang S, Honma T, Nakamura T, Furukawa I, Yamamoto F (1998b). Regulation by uniconazole-P and gibberellins of morphological and anatomical responses of Fraxinus mandshurica seedlings to gravity. IAWA J. 19, 311320.
  • Jiang S, Li YF, Chen XH, Xu K (2006). Control of negative gravitropism and tension wood formation by gibberellic acid and indole acetic acid in Fraxinus mandshurica Rupr. var. japonica Maxim seedlings. J. Integr. Plant Biol. 48, 161168.
  • Jiang S, Nakamura T, Yamamoto F (2003). Effects of applied gibberellins on gravitropism and wood formation in horizontally-positioned Fraxinus mandshurica seedlings. Acta Bot. Yunnan. 25, 336346 (in Chinese with an English abstract).
  • Kennedy RW, Farrar JL (1965). Induction of tension wood with the anti-auxin 2,3,5-tri-iodobenzoic acid. Nature 208, 406407.
  • Kozlowski TT, Pallardy SG (1997). Physiology of Woody Plants, 2nd edn. Academic Press, San Diego , CA, USA .
  • Kuriyama H, Fukuda H (2000). Regulation of tracheary element differentiation. J. Plant Growth Regul. 20, 3551.
  • Kwon M, Bedgar DL, Piastuch W, Davin LB, Lewis NG (2001). Induced compression wood formation in Douglas fir (Pseudotsuga menziesii) in microgravity. Phytochemistry 57, 847857.
  • Lachaud S (1987). Xylogénèse chez les dicotylédones arborescentes. V. Formation du bois de tension et transport de l'acide indole acétique tritié chez le Hétre. Can. J. Bot. 65, 12531258.
  • Larson PR (1962a). A biological approach to wood quality. TAPPI J. 45, 443448.
  • Larson PR (1962b). Auxin gradients and the regulation of cambial activity. In: Kozlowski, T T, ed. Tree Growth. Ronald Press, New York pp. 97117.
  • Larson PR (1994). The Vascular Cambium: Development and Structure. Springer-Verlag, Berlin .
  • Leach RWA, Wareing PF (1967). Distribution of auxin in horizontal woody stems in relation to gravimorphism. Nature 214, 10251027.
  • Leopold AC, Brown KM, Emerson FH (1972). Ethylene in the wood of stressed trees. HortScience 7, 715.
  • Lepp NW, Peel AJ (1971). Distribution of growth regulators and sugars by the tangential and radial transport systems of stem segments of willow. Planta 99, 275282.
  • Lin JX, Li ZL (1993). Comparative anatomy of normal wood and compression wood of masson pine (Pinus massoniana). Acta Bot. Sin. 35, 201215 (in Chinese with an English abstract).
  • Little CHA (1967). Some Aspects of Apical Dominance in Pinus strobes L. Ph D Thesis, Yale Univ., New Haven .
  • Little CHA, Eklund L (1999). Ethylene in relation to compression wood formation in Abies balsamea shoots. Trees 13, 173177.
  • Little CHA, Pharis RP (1995). Hormonal control of radial and longitudinal growth in the tree stem. In: Gartner, BL, ed. Plant Stems: Physiology and Functional Morphology. Academic Press, New York pp. 281319.
  • Little CHA, Savidge RA (1987). The role of plant growth regulators in forest tree cambial growth. Plant Growth Regul. 6, 137169.
  • Lohrasebi H, Mabee WE, Roy DN (1999). Chemistry and pulping feasibility of compression wood in black spruce. J. Wood Chem. Technol. 19, 1325.
  • Lomax TL, Muday GK, Rubery PH (1995). Auxin transport. In: Davies, PJ, ed. Plant Hormones, 2nd edn. Kluwer Academic Publishers, Dordrecht pp. 509530.
  • Mellerowicz EJ, Baucher M, Sundberg B, Boerjan W (2001). Unravelling cell wall formation in the woody dicot stem. Plant Mol. Biol. 47, 239274.
  • Miller AR, Crawford DL, Roberts LW (1985). Lignification and xylogenesis in Lactuca pith explants cultured in vitro in the presence of auxin and cytokinin: A role for endogenous ethylene. J. Exp. Bot. 36, 110118.
  • Minorsky PV (2004). Is auxin involved in reaction wood formation Plant Physiol. 135, 1.
  • Morey PR, Cronshaw J (1968a). Developmental changes in the secondary xylem of Acer rubrum induced by various auxins and 2,3,5-tri-iodobenzoic acid. Protoplasma 65, 287313.
  • Morey PR, Cronshaw J (1968b). Induction of tension wood by 2,4-dinitrophenol and auxins. Protoplasma 65, 393405.
  • Moritz T, Sundberg B (1996). Endogenous cytokinins in the vascular cambial regions of Pinus sylvestris during activity and dormancy. Physiol. Plant 98, 693698.
  • Moyle R, Schrader J, Stenberg A, Olsson O, Saxena S, Sandberg G, Bhalerao RP (2002). Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid aspen. Plant J. 31, 675685.
  • Muday GK (2001). Auxin and tropisms. J. Plant Growth Regul. 20, 226243.
  • Muday GK, DeLong A (2001). Polar auxin transport: Controlling where and how much. Trends Plant Sci. 6, 535542.
  • Mwange KN, Hou HW, Wang YQ, He XQ, Cui KM (2005). Opposite patterns in the annual distribution and time-course of endogenous abscisic acid and indole-3-acetic acid in relation to the periodicity of cambial activity in Eucommia ulmoides Oliv. J. Exp. Bot. 56, 10171028.
  • Nakamura T, Negishi Y, Funada R, Yamada M (2001). Sedimentation amyloplasts in starch sheath cells of woody stems of Japanese cherry. Adv. Space Res. 27, 957960.
  • Nakamura T, Saotome M, Ishiguro Y, Itoh R, Higurashi S, Hosono M et al. (1994). The effects of GA3 on weeping of growing shoots of the Japanese cherry, Prunus spachiana. Plant Cell Physiol. 35, 523527.
  • Nakamura T, Saotome M, Tanaka H (1995). Weeping habit and gibberellin in Prunus. Acta Horticult. 394, 273280.
  • Nečesaný V (1958). Effect of β-indoleacetic acid on the formation of reaction wood. Phyton 11, 117127.
  • Nečesaný V (1971). Effect of growth substances on chemical composition and ultrastructure of cell wall. Drev. Vysk. 16, 93106.
  • Nelson ND, Hillis WE (1978). Ethylene and tension wood formation in Eucalyptus gomphocephala. Wood Sci. Technol. 12, 309315.
  • Norberg PH, Meier H (1966). Physical and chemical properties of the gelatinous layer in tension wood fibers of aspen (Populus tremula L). Holzforschung 20, 174178.
  • Northcote DH (1993). Measurable changes in plant cells during differentiation. J. Plant Res. NSI 3, 109115.
  • Onaka F (1935). Über die rotholzanordnung bei nadelbäumen. J. JPN. For. Soc. 17, 680693 (in Japanese).
  • Onaka F (1940). Über den einfluß von heteroauxin auf das dickenwachstum, besonders die rotholzbildung der bäume. J. JPN. For. Soc. 22, 573580 (in Japanese).
  • Onaka F (1942). Die Verteilung des Wuchsstoffes und das Dickenwachstum der Bäume. J. JPN. For. Soc. 24, 341355 (in Japanese).
  • Onaka F (1949). Studies on compression- and tension-wood. Mokuzai Kenkyu, Wood Res. Inst. Kyoto. Univ. 1, 188 (in Japanese with an English resume).
  • Phelps JE, McGinnes EAJr, Pieniazek J, Saniewski M, Smoliński M (1975). A scanning electron microscope study of the structure of normal, tension and morphactin IT 3456 induced wood in Aesculus hippocastanum. Bull. Acad. Polon. Sci. 23, 495497.
  • Phelps JE, McGinnes EAJr, Saniewski M, Pieniazek J, Smoliński M (1980). Some anatomical observations on the effect of morphactin IT 3456 and ethrel on wood formation in Salix fragilis. IAWA Bull. n.s. 1, 7682.
  • Phelps JE, McGinnes EAJr, Smoliński M, Saniewski M, Pieniazek J (1976). A note on the formation of compression wood induced by morphactin IT 3456 in Thuja shoots. Wood Fiber. 8, 223227.
  • Phelps JE, Saniewski M, Smoliński M, Pieniazek J, McGinnes EAJr (1974). A note on the structure of morphactin-induced wood in two coniferous species. Wood Fiber. 6, 1317.
  • Plomion C, Leprovost G, Stokes A (2001). Wood formation in trees. Plant Physiol. 127, 15131523.
  • Poovaiah BW, Reddy ASN (1993). Calcium and signal transduction in plants. Crit. Rev. Plant Sci. 12, 185211.
  • Ramsden L, Northcote DH (1987). Tracheid formation in cultures of Pinus sylvestris. J. Cell Sci. 88, 467474.
  • Reynolds TL (1987). Cytodifferentiation in cell suspension cultures of Solanum carolinense: Effects of 2,4-D and kinetin. J. Plant Physiol. 130, 373383.
  • Rhodes MJC, Wooltorton LSC (1971). The effect of ethylene on the respiration and on the activity of phenylalanine ammonia lyase in swede and parsnip root tissues. Phytochemistry 10, 19891997.
  • Rhodes MJC, Wooltorton LSC (1973). Stimulation of phenolic acid and lignin biosynthesis in swede root tissue by ethylene. Phytochemistry 12, 107118.
  • Rinne P (1990). Effects of various stress treatments on growth and ethylene evolution in seedlings and sprouts of Betula pendula Roth and B. pubescens Ehrh. Scand. J. For. Res. 5, 155167.
  • Robards AW (1965). Tension wood and eccentric growth in crack willow (Salix fragilis L.). Ann. Bot. 29, 419431.
  • Robitaille HA (1975). Stress ethylene production in apple shoots. J. Am. Soc. Hortic. Sci. 100, 524527.
  • Robitaille HA, Leopold AC (1974). Ethylene and the regulation of apple stem growth under stress. Physiol. Plant 32, 301304.
  • Robnett WE, Morey PR (1973). Wood formation in Prosopis: Effect of 2,4-D, 2,3,5-T, and TIBA. Am. J. Bot. 60, 745754.
  • Ross JJ, O'Neill DP (2001). New interactions between classical plant hormones. Trends Plant Sci. 6, 24.
  • Ross JJ, O'Neill DP, Wolbang CM, Symons GM, Reid JB (2002). Auxin-gibberellin interactions and their role in plant growth. J. Plant Growth Regul. 20, 346353.
  • Savidge RA (1988). Auxin and ethylene regulation of diameter growth in trees. Tree Physiol. 4, 401414.
  • Savidge RA, Mutumba GMC, Heald JK, Wareing PF (1983). Gas chromatography-mass spectroscopy identification of 1-aminocyclopropane-1-carboxylic acid in compression wood vascular cambium of Pinus contorta Dougl. Plant Physiol. 71, 434436.
  • Savidge RA, Wareing PF (1981a). A tracheid differentiation factor from pine needles. Planta 153, 395404.
  • Savidge RA, Wareing PF (1981b). Plant growth regulators and the differentiation of vascular elements. In: Barnett, JR, ed. Xylem Cell Development. Castle House Publications, Tunbridge Wells pp. 192235.
  • Savidge RA, Wareing PF (1984). Seasonal cambial activity and xylem development in Pinus contorta in relation to endogenous indol-3-ylacetic and (S)-abscisic acid levels. Can. J. For. Res. 14, 676682.
  • Scott DRM, Preston SB (1955). Development of compression wood in eastern white pine through the use of centrifugal force. For. Sci. 1, 178182.
  • Scurfield G (1973). Reaction wood: Its structure and function. Science 179, 647655.
  • Sinnott EW (1952). Reaction wood and the regulation of tree form. Am. J. Bot. 30, 6978.
  • Smoliński M, Pieniazek J, Saniewski M (1973). Induction of compression-like wood by morphactin in vertically growing shoots of Pinus sylvestris L. Proc. Inst. Sadow. Skierniewice. Ser. E 3, 553558.
  • Smoliński M, Saniewski M, Pieniazek J (1972). Effect of morphactin IT 3456 on cambial activity and wood differentiation in Picea excelsa. Bull. Acad. Pol. Sci. Ser. Sci. Biol. 20, 431435.
  • Smoliński M, Saniewski M, Pieniazek J (1974). The suppression of tension wood formation in bent shoots of Aesculus hippocastanum L. by morphactin IT 3456. Bull. Acad. Pol. Sci. Ser. Sci. Biol. 22, 809812.
  • Starbuck CJ, Roberts AN (1982). Movement and distribution of 14C-indole-3-acetic acid in branches and rooted cuttings of Douglas-Fir. Physiol. Plant 55, 389394.
  • Starbuck CJ, Roberts AN (1983). Compression wood in rooted cuttings of Douglas-Fir. Physiol. Plant 57, 371374.
  • Sundberg B, Little CHA, Riding RT, Sandberg G (1987). Levels of endogenous indole-3-acetic acid in the vascular cambium region of Abies balsamea trees during the activity—rest—quiescence transition. Physiol. Plant 71, 163170.
  • Sundberg B, Tuominen H, Little CHA (1994). Effects of the indole-3-acetic acid (IAA) transport inhibitors N-1-naphthylphthalamic acid and morphactin on endogenous IAA dynamics in relation to compression wood formation in 1-year-old Pinus sylvestris L. shoots. Plant Physiol. 106, 469476.
  • Sundberg B, Uggla C, Tuominen H (2000). Cambial growth and auxin gradients. In: Savidge, R, Barnett, J, Napier, R, eds. Cell and Molecular Biology of Wood Formation. BIOS Scientific Publishers Ltd., Oxford pp. 169188.
  • Suttle JC (1988). Effect of ethylene treatment on polar IAA transport, net IAA uptake and specific binding of N-1-naphthylphthalamic acid in tissues and microsomes isolated from etiolated pea epicotyls. Plant Physiol. 88, 795799.
  • Telewski FW (1990). Growth, wood density, and ethylene production in response to mechanical perturbation in Pinus taeda. Can. J. For. Res. 20, 12771282.
  • Telewski FW, Jaffe MJ (1986). Thigmomorphogenesis: The role of ethylene in the response of Pinus taeda and Abies fraseri to mechanical perturbation. Physiol. Plant 66, 227233.
  • Telewski FW, Wakwfield AH, Jaffe MJ (1983). Computer-assisted image analysis of tissues of Ethrel-treated Pinus taeda seedlings. Plant Physiol. 72, 177181.
  • Timell TE (1969). The chemical composition of tension wood. Svensk Papperstidning 72, 173181.
  • Timell TE (1986). Compression Wood in Gymnosperms, Vol. 1–3. Springer-Verlag, New York .
  • Tomlinson PB (2001). Reaction tissues in Gnetum gnemon —A preliminary report. IAWA J. 22, 401413.
  • Trewawas AJ, Malho R (1998). Ca2+ signaling in plant cells: The big network Curr. Opin. Plant Biol. 1, 428433.
  • Uggla C, Moritz T, Sandberg G, Sundberg B (1996). Auxin as a positional signal in pattern formation in plants. Proc. Natl. Acad. Sci. USA 93, 92829286.
  • Wang Q, Little CHA, Odén PC (1995). Effect of laterally applied gibberellin A4/7 on cambial growth and the level of indole-3-acetic acid in Pinus sylvestris shoots. Physiol. Plant 95, 187194.
  • Wang Q, Little CHA, Sheng C, Odén PC, Pharis RP (1992). Effect of exogenous gibberellin A4/7 on tracheid production, longitudinal growth and the levels of indole-3-acetic acid and gibberellins A4, A7 and A9 in the terminal shoot of Pinus sylvestris seedlings. Physiol. Plant 86, 202208.
  • Wardrop AB (1956). The nature of reaction wood. V. The distribution and formation of tension wood in some species of Eucalyptus. Aust. J. Bot. 4, 152166.
  • Wardrop AB (1964). The reaction wood anatomy of arborescent angiosperms. In: Zimmermann, MH, ed. The Formation of Wood in Forest Trees. Academic Press, New York pp. 405456.
  • Wardrop AB (1965). The formation and function of reaction wood. In: Côté, WA, ed. Cellular Ultrastructure of Woody Plants. Syracuse Univ Press, Syracuse pp. 373390.
  • Wardrop AB, Davies GW (1964). The nature of reaction wood VIII. The structure and differentiation of compression wood. Aust. J. Bot. 12, 2438.
  • Wareing PF (1970). Growth and its coordination in trees. In: Luckwill, LC, Cutting, CV, eds. The Physiology of Tree Crops. Academic Press, London .
  • Wareing PF, Hanney CEA, Digby J (1964). The role of endogenous hormones in cambial activity and xylem differentiation. In: Zimmermann, MH, ed. The Formation of Wood in Forest Trees. Academic Press, New York pp. 323344.
  • Went FW (1926). On growth accelerating substances in the coleop-tile of Avena sativa. Proc. K. Akad. Wet. Amsterdam. 30, 1019.
  • Westermark U (1982). Calcium promoted phenolic coupling by superoxide radical—a possible lignification reaction in wood. Wood Sci. Technol. 16, 7178.
  • Westing AH (1965). Compression wood in the regulation of branch angle in gymnosperms. Bull. Torrey. Bot. Club 92, 6266.
  • Westing AH (1965). Formation and function of compression wood in gymnosperms. Bot. Rev. 31, 381840.
  • Westing AH (1968). Formation and function of compression wood in gymnosperms II. Bot. Rev. 34, 5178.
  • Wilson BF, Archer RR (1977). Reaction wood: Induction and mechanical action. Ann. Rev. Plant Physiol. 28, 2343.
  • Wilson BF, Archer RR (1983). Apical control of branch movements and tension wood in black cherry and white ash trees. Can. J. For. Res. 13, 594600.
  • Wilson BF, Chien CT, Zaerr JB (1989). Distribution of endogenous indole-3-acetic acid and compression wood formation in reoriented branches of Douglas-fir. Plant Physiol. 91, 338344.
  • Wood BW (1985). Effect of ethephon on IAA transport, IAA conjugation, and antidotal action of NAA in relation to leaf abscission of pecan. J. Am. Soc. Hortic. Sci. 110, 340343.
  • Yamaguchi K, Itoh T, Shimaji K (1980). Formation of compression wood induced by 1-N-Naphthylphthalamic acid (NPA), an IAA transport inhibitor. Wood Sci. Technol. 14, 181185.
  • Yamaguchi K, Shimaji K, Itoh T (1983). Simultaneous inhibition and induction of compression wood formation by morphactin in artificially inclined stems of Japanese larch (Larix leptolepis Gordon). Wood Sci. Technol. 17, 8189.
  • Yamamoto F (2002). Cambial activity and radial growth in trees. In: Nagata, H, Sasaki, S, eds. Ecological Tree Physiology. Buneido Publishing, Tokyo . pp. 123155 (in Japanese).
  • Yamamoto F, Angeles G, Kozlowski TT (1987). Effect of ethrel on stem anatomy of Ulmus americana seedlings. IAWA Bull. n. s. 8, 39.
  • Yamamoto F, Kozlowski TT (1987a). Effect of ethrel on growth and stem anatomy of Pinus halepensis seedlings. IAWA Bull. n. s. 8, 1119.
  • Yamamoto F, Kozlowski TT (1987b). Effects of flooding, tilting of stems, and ethrel application on growth, stem anatomy and ethylene production of Pinus densiflora seedlings. J. Exp. Bot. 38, 293310.
  • Yamamoto F, Kozlowski TT (1987). Effects of flooding, tilting of stems, and ethrel application on growth, stem anatomy, and ethylene production of Acer platanoides seedlings. Scand. J. For. Res. 2, 141156.
  • Yoshizawa N, Satoh M, Yokota S, Idei T (1993). Formation and structure of reaction wood in Buxus microphylla var. insularis Nakai. Wood Sci. Technol. 27, 110.
  • Zhong Y, Savidge RA (1995). Effects of IAA and GA3 on in vitro wood formation in merchantable stems of white ash (Fraxinus Americana L.). Proc Plant Growth Regul Soc Am 22nd Ann Meet. Research Triangle Park , NC. pp. 231236.
  • Zimmermann MH, Brown CL (1971). Trees: Structure and Function. Springer-Verlag, Berlin .
  • Zobel BJ, Van Buijtenen JP (1989). Wood Variations: Its Causes and Control (Springer series in wood science). Springer-Verlag, Berlin .