SEARCH

SEARCH BY CITATION

References

  • Agrell J, Anderson P, Oleszek W, Stochmal A, Agrell C (2004). Combined effects of elevated CO2 and herbivore damage on alfalfa and cotton. J. Chem. Ecol. 30, 23092324.
  • Agrell J, Anderson P, Oleszek W, Stochmal A, Agrell C (2006). Elevated CO2 levels and herbivore damage alter host plant preferences. Oikos 112, 6372.
  • Agrell J, Kopper B, McDonald EP, Lindroth RL (2005). CO2 and O3 effects on host plant preferences of the forest tent caterpillar (Malacosoma disstria). Glob. Change Biol. 11, 588599.
  • Agrell J, McDonald EP, Lindroth RL (2000). Effects of CO2 and light on tree phytochemistry and insect performance. Oikos 88, 259272.
  • Ambasht NK, Agrawal AA (1997). Influence of supplemental UV-B radiation on photosynthetic characteristics of rice plants. Photosynthetica 34, 401408.
  • Andalo C, Goldringer I, Godelle B (2001). Inter and intragenotypic competition under elevated carbon dioxide in Arabidopsis thaliana. Ecology (Washington DC) 82, 157164.
  • Asshoff R, Hattenschwiler S (2005). Growth and reproduction of the alpine grasshopper Miramella alpina feeding on CO2 -enriched dwarf shrubs at treeline. Oecologia (Berlin) 142, 191201.
  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK et al. (2002). Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 116.
  • Ballare CL, Scopel AL, Stapleton AE, Yanovsky MJ (1996). Solar ultraviolet-B radiation affects seedling emergence, DNA integrity, plant morphology, growth rate, and attractiveness to herbivore insects in Datura ferox. Plant Physiol. 112, 161170.
  • Barbehenn RV, Karowe DN, Chen Z (2004). Performance of a generalist grasshopper on a C3 and a C4 grass: compensation for the effects of elevated CO2 on plant nutritional quality. Oecologia 140, 96103.
  • Bassman JH (2004). Ecosystem consequences of enhanced solar ultraviolet radiation: secondary plant metabolites as mediators of multiple trophic interactions in terrestrial plant communities. Photochem. Photobiol. 79, 382398.
  • Bazin A, Goverde M, Erhardt A, Shykoff JA (2002). Influence of atmospheric carbon dioxide enrichment on induced response and growth compensation after herbivore damage in Lotus corniculatus. Ecol. Entomol. 27, 271278.
  • Bazzaz FA, Coleman JS, Morse SR (1990). Growth-responses of 7 major cooccurring tree species of the northeastern United-States to elevated CO2. Can. J. For. Res. 20, 14791484.
  • Bazzaz FA, Jasienski M, Thomas SC, Wayne P (1995). Microevolutionary responses in experimental populations of plants to CO2 -enriched environments: parallel results from two model systems. Proc. Natl. Acad. Sci. USA 92, 81618165.
  • Bazzaz FA, Miao SL (1993). Successional status, seed size, and responses of tree seedlings to carbon dioxide light, and nutrients. Ecology 74, 104112.
  • Berenbaum M (1983). Coumarins and caterpillars – a case for coevolution. Evolution 37, 163179.
  • Berenbaum M (1995). Phototoxicity of plant secondary metabolites: insect and mammalian perspectives. Arch. Insect Biochem. Physiol. 29, 119134.
  • Bezemer TM, Jones TH (1998). Plant-insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effects. Oikos 82, 212222.
  • Bidart-Bouzat MG (2004). Herbivory modifies the lifetime fitness response of Arabidopsis thaliana to elevated CO2. Ecology (Washington DC) 85, 297303.
  • Bidart-Bouzat MG, Mithen R, Berenbaum MR (2005). Elevated CO2 influences herbivory-induced defense responses of Arabidopsis thaliana. Oecologia (Berlin) 145, 415424.
  • Bonello P, Heller W, Sandermann H (1993). Ozone effects on root-disease susceptibility and defense responses in mycorrhizal and nonmycorrhizal seedlings of scots pine (Pinus sylvestris L.). New Phytol. 124, 653663.
  • Booker FL (2000). Influence of carbon dioxide enrichment, ozone and nitrogen fertilization on cotton (Gossypium hirsutum L.) leaf and root composition. Plant Cell Environ. 23, 573583.
  • Bornman JF, Teramura AH (1993). Effects of ultraviolet-B radiation on terrestrial plants. In: BjornLO, MoanJ, NultschW, YoungAR, eds. Environmental UV Photobiology. Plenum Press, New York . pp. 427471.
  • Braga MR, Aidar MPM, Marabesi MA, De Godoy JRL (2006). Effects of elevated CO2 on the phytoalexin production of two soybean cultivars differing in the resistance to stem canker disease. Environ. Exp. Bot. 58, 8592.
  • Bryant JP, Chapin FS, Klein DR (1983). Carbon nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40, 357368.
  • Bryant JP, Chapin FSI, Reichardt PB, Clausen TP (1987). Response of winter chemical defense in Alaska paper birch and green alder to manipulation of plant carbon-nutrient balance. Oecologia (Berlin) 72, 510514.
  • Buse A, Good JEG, Dury S, Perrins CM (1998). Effects of elevated temperature and carbon dioxide on the nutritional quality of leaves of oak (Quercus robur L.) as food for the winter moth (Operophtera brumata L.). Funct. Ecol. 12, 742749.
  • Caldwell MM, Ballare CL, Bornman JF, Flint SD, Bjorn LO, Teramura AH et al. (2003). Terrestrial ecosystems increased solar ultraviolet radiation and interactions with other climatic change factors. Photochem. Photobiol. Sci. 2, 2938.
  • Caldwell MM, Bornman JF, Ballare CL, Flint SD, Kulandaivelu G (2007). Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochem. Photobiol. Sci. 6, 252266.
  • Caputo C, Rutitzky M, Ballare CL (2006). Solar ultraviolet-B radiation alters the attractiveness of Arabidopsis plants to diamondback moths (Plutella xylostella L.): impacts on oviposition and involvement of the jasmonic acid pathway. Oecologia 149, 8190.
  • Castells E, Roumet C, Penuelas J, Roy J (2002). Intraspecific variability of phenolic concentrations and their responses to elevated CO2 in two Mediterranean perennial grasses. Environ. Exp. Bot. 47, 205216.
  • Ceulemans R, Mousseau M (1994). Tansley review No-71. Effects of elevated atmospheric CO2 on woody-plants. New Phytol. 127, 425446.
  • Chong JH, Van Iersel MW, Oetting RD (2004). Effects of elevated carbon dioxide levels and temperature on the life history of the Madeira mealybug (Hemiptera: Pseudococcidae). J. Entomol. Sci. 39, 387397.
  • Coley PD, Massa M, Lovelock CE, Winter K (2002). Effects of elevated CO2 on foliar chemistry of saplings of nine species of tropical tree. Oecologia (Berlin) 133, 6269.
  • Constable JVH, Litvak ME, Greenberg JP, Monson RK (1999). Monoterpene emission from coniferous trees in response to elevated CO2 concentration and climate warming. Glob. Change Biol. 5, 255267.
  • Cornell HV, Hawkins BA (2003). Herbivore responses to plant secondary compounds: a test of phytochemical coevolution theory. Am. Nat. 161, 507522.
  • Coviella CE, Stipanovic RD, Trumble JT (2002). Plant allocation to defensive compounds: interactions between elevated CO2 and nitrogen in transgenic cotton plants. J. Exp. Bot. 53, 323331.
  • Curtis PA, Wang X (1998). A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia (Berlin) 113, 299313.
  • Curtis PS (1996). A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant Cell Environ. 19, 127137.
  • Davey MP, Bryant DN, Cummins I, Ashenden TW, Gates P, Baxter R et al. (2004). Effects of elevated CO2 on the vasculature and phenolic secondary metabolism of Plantago maritima. Phytochemistry 65, 21972204.
  • Dewar RC, Watt AD (1992). Predicted changes in the synchrony of larval emergence and budburst under climatic warming. Oecologia (Berlin) 89, 557559.
  • Diaz S, Fraser LH, Grime JP, Falczuk V (1998). The impact of elevated CO2 on plant-herbivore interactions: experimental evidence of moderating effects at the community level. Oecologia (Berlin) 117, 177186.
  • Dixon P, Weinig C, Schmitt J (2001). Susceptibility to UV damage in Impatiens capensis (Balsaminaceae): testing for opportunity costs to shade-avoidance and population differentiation. Am. J. Bot. 88, 14011408.
  • Dury SJ, Good JEG, Perrins CM, Buse A, Kaye T (1998). The effects of increasing CO2 and temperature on oak leaf palatability and the implications for herbivorous insects. Glob. Change Biol. 4, 5561.
  • Ehrlich PR, Raven PH (1964). Butterflies and plants: a study in coevolution. Evolution 18, 586608.
  • Fajer ED (1989). The effects of enriched carbon dioxide atmospheres on plant-insect herbivore interactions growth responses of larvae of the specialist butterfly Junonia coenia lepidoptera nymphalidae. Oecologia (Berlin) 81, 514520.
  • Filella I, Penuelas J (1999). Altitudinal differences in UV absorbance, UV reflectance and related morphological traits of Quercus ilex and Rhododendron ferrugineum in the Mediterranean region. Plant Ecol. 145, 157165.
  • Fujibe T, Watanabe K, Nakajima N, Ohashi Y, Mitsuhara I, Yamamoto KT et al. (2000). Accumulation of pathogenesis-related proteins in tobacco leaves irradiated with UV-B. J. Plant Res. 113, 387394.
  • Gates E, Krauss LM, White M (1995). Treating solar model uncertainties: a consistent statistical analysis of solar neutrino models and data. Phys. Rev. D Part Fields 51, 26312643.
  • Gebauer RLE, Strain BR, Reynolds JP (1998). The effect of elevated CO2 and N availability on tissue concentrations and whole plant pools of carbon-based secondary compounds in loblolly pine (Pinus taeda). Oecologia 113, 2936.
  • Goverde M, Erhardt A (2003). Effects of elevated CO2 on development and larval food-plant preference in the butterfly Coenonympha pamphilus (Lepidoptera, Satyridae). Glob. Change Biol. 9, 7483.
  • Goverde M, Erhardt A, Stocklin J (2004). Genotype-specific response of a lycaenid herbivore to elevated carbon dioxide and phosphorus availability in calcareous grassland. Oecologia 139, 383391.
  • Hahlbrock K, Scheel D (1989). Physiology and molecular-biology of phenylpropanoid metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 347369.
  • Hansen AH, Jonasson S, Michelsen A, Julkunen-Tiitto R (2006). Long-term experimental warming, shading and nutrient addition affect the concentration of phenolic compounds in arctic-alpine deciduous and evergreen dwarf shrubs. Oecologia 147, 111.
  • Harrington R, Woiwod I, Sparks T (1999). Climate change and trophic interactions. Trends Ecol. Evol. 14, 146150.
  • Hattenschwiler S, Schafellner C (1999). Opposing effects of elevated CO2 and N deposition on Lymantria monacha larvae feeding on spruce trees. Oecologia (Berlin)118, 210217.
  • Heyworth CJ, Iason GR, Temperton V, Jarvis PG, Duncan AJ (1998). The effect of elevated CO2 concentration and nutrient supply on carbon-based plant secondary metabolites in Pinus sylvestris L. Oecologia (Berlin) 115, 344350.
  • Himanen SJ, Nissinen A, Auriola S, Poppy GM, Stewart CN, Holopainen JK et al. (2008). Constitutive and herbivore-inducible glucosinolate concentrations in oilseed rape (Brassica napus) leaves are not affected by Bt Cry1Ac insertion but change under elevated atmospheric CO2 and O3. Planta 227, 427437.
  • Hofmann RW, Campbell BD, Bloor SJ, Swinny EE, Markham KR, Ryan KG et al. (2003). Responses to UV-B radiation in Trifolium repens L. – physiological links to plant productivity and water availability. Plant Cell Environ. 26, 603612.
  • Holopainen JK (2002). Aphid response to elevated ozone and CO2. Entomol. Exp. Appl. 104, 137142.
  • Holton MK, Lindroth RL, Nordheim EV (2003). Foliar quality influences tree-herbivore-parasitoid interactions: effects of elevated CO2, O3, and plant genotype. Oecologia 137, 233244.
  • IPCC (2007). Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom.
  • Izaguirre MM, Mazza CA, Svatos A, Baldwin IT, Ballare CL (2007). Solar ultraviolet-B radiation and insect herbivory trigger partially overlapping phenolic responses in Nicotiana attenuata and Nicotiana longiflora. Ann. Bot. 99, 103109.
  • Izaguirre MM, Scopel AL, Baldwin IT, Ballare CL (2003). Convergent responses to stress. Solar ultraviolet-B radiation and Manduca sexta herbivory elicit overlapping transcriptional responses in field-grown plants of Nicotiana longiflora. Plant Physiol. 132, 17551767.
  • Johns CV, Beaumont LJ, Hughes L (2003). Effects of elevated CO2 and temperature on development and consumption rates of Octotoma championi and O. scabripennis feeding on Lantana camara. Entomol. Exp. Appl. 108, 169178.
  • Johns CV, Hughes A (2002). Interactive effects of elevated CO2 and temperature on the leaf-miner Dialectica scalariella Zeller (Lepidoptera: Gracillariidae) in Paterson's curse, Echium Plantagineum (Boraginaceae). Glob. Change Biol. 8, 142152.
  • Johnson RH, Lincoln DE (1990). Sagebrush and grasshopper responses to atmospheric carbon dioxide concentration. Oecologia (Berlin)84, 103110.
  • Kainulainen P, Holopainen JK, Holopainen T (1998). The influence of elevated CO2 and O3 concentrations of Scots pine needles: changes in starch and secondary metabolites over three exposure years. Oecologia (Berlin)114, 455460.
  • Kanoun M, Goulas MJ, Biolley J (2001). Effect of a chronic and moderate ozone pollution on the phenolic pattern of bean leaves (Phaseolus vulgaris L. cv Nerina): relations with visible injury and biomass production. Biochem. Syst. Ecol. 29, 443457.
  • Karowe DN, Seimens DH, Mitchell-Olds T (1997). Species-specific response of glucosinolate content to elevated atmospheric CO2. J. Chem. Ecol. 23, 25692582.
  • Keen NT, Taylor OC (1975). Ozone injury in soybeans: isoflavonoid accumulation is related to necrosis. Plant Physiol. 55, 731733.
  • Kellomaki S, Vaisanen H (1997). Modelling the dynamics of the forest ecosystem for climate change studies in the boreal conditions. Ecol. Model. 97, 121140.
  • Kirk JTO, Macdonald CG (1974). 1-cyano-3, 4-epithiobutane: a major product of glucosinolate hydrolysis in seeds from certain varieties of Brassica campestris. Phytochemistry 13, 26112615.
  • Kliebenstein DJ (2004). Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant Cell Environ. 27, 675684.
  • Knepp RG, Hamilton JG, Mohan JE, Zangerl AR, Berenbaum MR, DeLucia EH (2005). Elevated CO2 reduces leaf damage by insect herbivores in a forest community. New Phytol. 167, 207218.
  • Knepp RG, Hamilton JG, Zangerl AR, Berenbaum MR, DeLucia EH (2007). Foliage of oaks grown under elevated CO2 reduces performance of Antheraea polyphemus (Lepidoptera: Saturniidae). Environ. Entomol. 36, 609617.
  • Kopper BJ, Lindroth RL (2003). Effects of elevated carbon dioxide and ozone on the phytochemistry of aspen and performance of an herbivore. Oecologia (Berlin)134, 95103.
  • Kopper BJ, Lindroth RL, Nordheim EV (2001). CO2 and O3 effects on paper birch (Betulaceae: Betula papyrifera) phytochemistry and white marked tussock moth (Lymantriidae: Orgyia leucostigma) performance. Environ. Entomol. 30, 11191126.
  • Korner C, Bazzaz FA (1996). Carbon Dioxide, Populations, and Communities. Academic Press, Inc., San Diego .
  • Kubiske ME, Zak DR, Pregitzer KS, Takeuchi Y (2002). Photosynthetic acclimation of overstory Populus tremuloides and understory Acer saccharum to elevated atmospheric CO2 concentration: interactions with shade and soil nitrogen. Tree Physiol. 22, 321329.
  • Kunz BA, Cahill DM, Mohr PG, Osmond MJ, Vonarx EJ (2006). Plant responses to UV radiation and links to pathogen resistance. Int. Rev. Cytol. Surv. Cell Biol. 255, 140.
  • Kuokkanen K, Julkunen-Tiitto R, Keinanen M, Niemela P, Tahvanainen J (2001). The effect of elevated CO2 and temperature on the secondary chemistry of Betula pendula seedlings. Trees 15, 378384.
  • Lavola A (1998). Accumulation of flavonoids and related compounds in birch induced by UV-B irradiance. Tree Physiol. 18, 5358.
  • Lavola A, Julkunen-Tiitto R (1994). The effect of elevated carbon dioxide and fertilization on primary and secondary metabolites in birch, Betula pendula (Roth). Oecologia (Berlin)99, 315321.
  • Lavola A, Julkunen-Tiitto R, De La Rosa TM, Lehto T, Aphalo PJ (2000). Allocation of carbon to growth and secondary metabolites in birch seedlings under UV-B radiation and CO2 exposure. Physiol. Plant. 109, 260267.
  • Lincoln DE, Fajer ED, Robert JH (1993). Plant-insect herbivore interactions in elevated CO2 environments. Trends Ecol. Evol. 8, 6468.
  • Lindroth RL (1996). Consequences of elevated atmospheric CO2 for forest insects. In: KornerC, BazzazFA, eds. Carbon Dioxide, Populations and Communities. Academic Press, Inc., San Diego . pp. 347361.
  • Lindroth RL, Hofmann RW, Campbell BD, McNabb WC, Hunt DY (2000). Population differences in Trifolium repens L. response to ultraviolet-B radiation: foliar chemistry and consequences for two lepidopteran herbivores. Oecologia 122, 2028.
  • Lindroth RL, Kinney KK (1998). Consequences of enriched atmospheric CO2 and defoliation for foliar chemistry and gypsy moth performance. J. Chem. Ecol. 24, 16771695.
  • Lindroth RL, Kinney KK, Platz CL (1993). Responses of deciduous trees to elevated atmospheric CO2: productivity, phytochemistry, and insect performance. Ecology 74, 763777.
  • Lindroth RL, Kopper BJ, Parsons WFJ, Bockheim JG, Karnosky DF, Hendrey GR et al. (2001). Consequences of elevated carbon dioxide and ozone for foliar chemical composition and dynamics in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera). Environ. Pollut. 115, 395404.
  • Lo SCC, Nicholson RL (1998). Reduction of light-induced anthocyanin accumulation in inoculated sorghum mesocotyls – Implications for a compensatory role in the defense response. Plant Physiol. 116, 979989.
  • Logemann E, Hahlbrock K (2002). Crosstalk among stress responses in plants: pathogen defense overrides UV protection through an inversely regulated ACE/ACE type of light-responsive gene promoter unit. Proc. Natl. Acad. Sci. USA 99, 24282432.
  • Loreto F, Barta C, Brilli F, Nogues I (2006). On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant Cell Environ. 29, 18201828.
  • Loreto F, Fischbach RJ, Schnitzler JP, Ciccioli P, Brancaleoni E, Calfapietra C et al. (2001). Monoterpene emission and monoterpene synthase activities in the Mediterranean evergreen oak Quercus ilex L. grown at elevated CO2 concentrations. Glob. Change Biol. 7, 709717.
  • Lydon J, Teramura AH, Coffman CB (1987). UV-B radiation effects on photosynthesis, growth and cannabinoid production of 2 Cannabis sativa chemotypes. Photochem. Photobiol. 46, 201206.
  • Matros A, Amme S, Kettig B, Buck-Sorlin GH, Sonnewald U, Mock HP (2006). Growth at elevated CO2 concentrations leads to modified profiles of secondary metabolites in tobacco cv. SamsunNN and to increased resistance against infection with potato virus Y. Plant Cell Environ. 29, 126137.
  • Matusheski NV, Juvik JA, Jeffery EH (2004). Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli. Phytochemistry 65, 12731281.
  • Mazza CA, Boccalandro HE, Giordano CV, Battista D, Scopel AL, Ballare CL (2000). Functional significance and induction by solar radiation of ultraviolet-absorbing sunscreens in field-grown soybean crops. Plant Physiol. 122, 117125.
  • Mazza CA, Zavala J, Scopel AL, Ballare CL (1999). Perception of solar UVB radiation by phytophagous insects: behavioral responses and ecosystem implications. Proc. Natl. Acad. Sci. USA 96, 980985.
  • McCloud ES, Berenbaum MR (1994). Stratospheric ozone depletion and plant-insect interactions – Effects of UV-B radiation on foliage quality of Citrus jambhiri for Trichoplusia ni. J. Chem. Ecol. 20, 525539.
  • McCloud ES, Berenbaum MR (1999). Effects of enhanced UV-B radiation on a weedy forb (Plantago lanceolata) and its interactions with a generalist and specialist herbivore. Entomol. Exp. Appl. 93, 233247.
  • McDonald EP, Agrell J, Lindroth RL (1999). CO2 and light effects on deciduous trees: growth, foliar chemistry, and insect performance. Oecologia (Berlin)119, 389399.
  • McLeod AR, Rey A, Newsham KK, Lewis GC, Wolferstam P (2001). Effects of elevated ultraviolet radiation and endophytic fungi on plant growth and insect feeding in Lolium perenne, Festuca rubra, F. arundinacea and F. pratensis. J. Photochem. Photobiol. B 62, 97107.
  • Mirecki RM, Teramura AH (1984). Effects of ultraviolet-B irradiance on soybean .5. the dependence of plant-sensitivity on the photosynthetic photon flux-density during and after leaf expansion. Plant Physiol. 74, 475480.
  • Newman JA (2003). Climate change and cereal aphids: the relative effects of increasing CO2 and temperature on aphid population dynamics. Glob. Change Biol. 10, 515.
  • Newsham KK, Greenslade PD, Kennedy VH, McLeod AR (1999). Elevated UV-B radiation incident on Quercus robur leaf canopies enhances decomposition of resulting leaf litter in soil. Glob. Change Biol. 5, 403409.
  • Ogawa D, Nakajima N, Sano T, Tamaoki M, Aono M, Kubo A et al. (2005). Salicylic acid accumulation under O3 exposure is regulated by ethylene in tobacco plants. Plant Cell Physiol. 46, 10621072.
  • Ouwerkerk PBF, Hallard D, Verpoorte R, Memelink J (1999). Identification of UV-B light-responsive regions in the promoter of the tryptophan decarboxylase gene from Catharanthus roseus. Plant Mol. Biol. 41, 491503.
  • Paoletti E, Bytnerowicz A, Andersen C, Augustaitis A, Ferretti M, Grulke N et al. (2007). Impacts of air pollution and climate change on forest ecosystems – Emerging research needs. Sci. World J. 7, 18.
  • Pavia H, Cervin G, Lindgren A, Aberg P (1997). Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Mar. Ecol. Prog. Ser. 157, 139146.
  • Penuelas J, Estiarte M (1998). Can elevated CO2 affect secondary metabolism and ecosystem function? Trends Ecol. Evol. 13, 2024.
  • Penuelas J, Llusia J (1997). Effects of carbon dioxide, water supply, and seasonality on terpene content and emission by Rosmarinus officinalis. J. Chem. Ecol. 23, 979993.
  • Pereira FMV, Rosa E, Fahey JW, Stephenson KK, Carvalho R, Aires A (2002). Influence of temperature and ontogeny on the levels of glucosinolates in broccoli (Brassica oleracea var. italica) sprouts and their effect on the induction of mammalian phase 2 enzymes. J. Agric. Food Chem. 50, 62396244.
  • Pinto DM, Blande JD, Nykanen R, Dong WX, Nerg AM, Holopainen JK (2007a). Ozone degrades common herbivore-induced plant volatiles: does this affect herbivore prey location by predators and parasitoids? J. Chem. Ecol. 33, 683694.
  • Pinto DM, Nerg AM, Holopainen JK (2007b). The role of ozone-reactive compounds, terpenes, and green leaf volatiles (GLVs), in the orientation of Cotesia plutellae. J. Chem. Ecol. 33, 22182228.
  • Price PW (1997). Insect Ecology. J. Wiley, New York .
  • Raviv M, Antignus Y (2004). UV radiation effects on pathogens and insect pests of greenhouse-grown crops. Photochem. Photobiol. 79, 219226.
  • Reddy GV, Tossavainen P, Nerg AM, Holopainen JK (2004). Elevated atmospheric CO2 affects the chemical quality of brassica plants and the growth rate of the specialist, Plutella xylostella, but not the generalist, Spodoptera littoralis. J. Agric. Food Chem. 52, 41854191.
  • Roberts MR, Paul ND (2006). Seduced by the dark side: integrating molecular and ecological perspectives on the influence of light on plant defense against pests and pathogens. New Phytol. 170, 677699.
  • Rossi AM, Stiling P, Moon DC, Cattell MV, Drake BG (2004). Induced defensive response of myrtle oak to foliar insect herbivory in ambient and elevated CO2. J. Chem. Ecol. 30, 11431152.
  • Roth S, Lindroth RL, Volin JC, Kruger EL (1998). Enriched atmospheric CO2 and defoliation: effects on tree chemistry and insect performance. Glob. Change Biol. 4, 419430.
  • Rousseaux MC, Ballare CL, Scopel AL, Searles PS, Caldwell MM (1998). Solar ultraviolet-B radiation affects plant-insect interactions in a natural ecosystem of Tierra del Fuego (southern Argentina). Oecologia 116, 528535.
  • Rousseaux MC, Julkunen-Tiitto R, Searles PS, Scopel AL, Aphalo PJ, Ballare CL (2004). Solar UV-B radiation affects leaf quality and insect herbivory in the southern beech tree Nothofagus antarctica. Oecologia 138, 505512.
  • Sager EP, Hutchinson TC, Croley TR (2005). Foliar phenolics in sugar maple (Acer saccharum) as a potential indicator of tropospheric ozone pollution. Environ. Monit. Assess. 105, 419430.
  • Sallas L, Luomala EM, Utriainen J, Kainulainen P, Holopainen JK (2003). Contrasting effects of elevated carbon dioxide concentration and temperature on rubisco activity, chlorophyll fluorescence, needle ultrastructure and secondary metabolites in conifer seedlings. Tree Physiol. 23, 97108.
  • Sandermann H (1996). Ozone and plant health. Annu. Rev. Phytopathol. 34, 347366.
  • Schonhof I, Klaring HP, Krumbein A, Schreiner M (2007). Interaction between atmospheric CO2 and glucosinolates in broccoli. J. Chem. Ecol. 33, 105114.
  • Searles PS, Flint SD, Caldwell MM (2001). A meta analysis of plant field studies simulating stratospheric ozone depletion. Oecologia 127, 110.
  • Shadkami F, Helleur RJ, Cox RM (2007). Profiling secondary metabolites of needles of ozone-fumigated white pine (Pinus strobus) clones by thermally assisted hydrolysis/methylation GC/MS. J. Chem. Ecol. 33, 14671476.
  • Singh A (1996). Growth, physiological, and biochemical responses of three tropical legumes to enhanced UV-B radiation. Can. J. Bot. Rev. 74, 135139.
  • Snow MD, Bard RR, Olszyk DM, Minster LM, Hager AN, Tingey DT (2003). Monoterpene levels in needles of Douglas fir exposed to elevated CO2 and temperature. Physiol. Plant. 117, 352358.
  • Staudt M, Joffre R, Rambal S, Kesselmeier J (2001). Effect of elevated CO2 on monoterpene emission of young Quercus ilex trees and its relation to structural and ecophysiological parameters. Tree Physiol. 21, 437445.
  • Stephanou M, Manetas Y (1997). The effects of seasons, exposure, enhanced UV-B radiation, and water stress on leaf epicuticular and internal UV-B absorbing capacity of Cistus creticus: a Mediterranean field study. J. Exp. Bot. 48, 19771985.
  • Stiling P, Moon DC, Hunter MD, Colson J, Rossi AM, Hymus GJ et al. (2003). Elevated CO2 lowers relative and absolute herbivore density across all species of a scrub-oak forest. Oecologia (Berlin)134, 8287.
  • Stiling P, Rossi AM, Hungate B, Dijkstra P, Hinkle CR, Knott WM et al. (1999). Decreased leaf-miner abundance in elevated CO2: reduced leaf quality and increased parasitoid attack. Ecol. Appl. 9, 240244.
  • Stratmann J (2003). Ultraviolet-B radiation co-opts defense signaling pathways. Trends Plant Sci. 8, 526533.
  • Stratmann JW, Stelmach BA, Weller EW, Ryan CA (2000). UVB/UVA radiation activates a 48 kDa myelin basic protein kinase and potentiates wound signaling in tomato leaves. Photochem. Photobiol. 71, 116123.
  • Strengbom J, Reich PB (2006). Elevated CO2 and increased N supply reduce leaf disease and related photosynthetic impacts on Solidago rigida. Oecologia 149, 519525.
  • Tegelberg R, Julkunen-Tiitto RJ, Aphalo PJ (2004). Red: far-red light ratio and UV-B radiation: their effects on leaf phenolics and growth of silver birch seedlings. Plant Cell Environ. 27, 10051013.
  • Tollrian R, Harvell CD (1999). The evolution of inducible defenses: current ideas. In: TollrianR, HarvellCD, eds. The Ecology and Evolution of Inducible Defenses. University Press, New Jersey . pp. 306321.
  • Traw MB, Bergelson J (2003). Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiol. 133, 13671375.
  • Traw MB, Lindroth RL, Bazzaz FA (1996). Decline in gypsy moth (Lymantria dispar) performance in an elevated CO2 atmosphere depends upon host plant species. Oecologia (Berlin)108, 113120.
  • Valkama E, Koricheva J, Oksanen E (2007). Effects of elevated O3, alone and in combination with elevated CO2, on tree leaf chemistry and insect herbivore performance: a meta-analysis. Glob. Change Biol. 13, 184201.
  • Van Poecke RMP, Dicke M (2004). Indirect defence of plants against herbivores: using Arabidopsis thaliana as a model plant. Plant Biol. 6, 387401.
  • Van Poecke RMP, Posthumus MA, Dicke M (2001). Herbivore-induced volatile production by Arabidopsis thaliana leads to the attraction of the parasitoid Cotesa rubecula: chemical, behavioral and gene-expression analysis. J. Chem. Ecol. 27, 19111928.
  • Velasco P, Cartea ME, Gonzalez C, Vilar M, Ordas A (2007). Factors affecting the glucosinolate content of kale (Brassica oleracea acephala group). J. Agric. Food Chem. 55, 955962.
  • Veteli TO, Koricheva J, Niemela P, Kellomaki S (2006). Effects of forest management on the abundance of insect pests on Scots pine. For. Ecol. Manage. 231, 214217.
  • Veteli TO, Kuokkanen K, Julkunen-Tiitto R, Roininen H, Tahvanainen J (2002). Effects of elevated CO2 and temperature on plant growth and herbivore defensive chemistry. Glob. Change Biol. 8, 12401252.
  • Veteli TO, Tegelberg R, Pusenius J, Sipura M, Julkunen-Tiitto R, Aphalo PJ et al. (2003). Interactions between willows and insect herbivores under enhanced ultraviolet-B radiation. Oecologia 137, 312320.
  • Vuorinen T, Nerg AM, Holopainen JK (2004a). Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling. Environ. Pollut. 131, 305311.
  • Vuorinen T, Nerg AM, Ibrahim MA, Reddy GVP, Holopainen JK (2004b). Emission of Plutella xylostella-induced compounds from cabbages grown at elevated CO2 and orientation behavior of the natural enemies. Plant Physiol. 135, 19841992.
  • Whittaker JB (1999). Impacts and responses at population level of herbivorous insects to elevated CO2. Eur. J. Entomol. 96, 149156.
  • Williams RS, Lincoln DE, Norby RJ (2003). Development of gypsy moth larvae feeding on red maple saplings at elevated CO2 and temperature. Oecologia 137, 114122.
  • Williams RS, Norby RJ, Lincoln DE (2000). Effects of elevated CO2 and temperature-grown red and sugar maple on gypsy moth performance. Glob. Change Biol. 6, 685695.
  • Wilson SR, Solomon KR, Tang X (2007). Changes in tropospheric composition and air quality due to stratospheric ozone depletion and climate change. Photochem. Photobiol. Sci. 6, 301310.
  • Wullschleger SD, Tschaplinski TJ, Norby RJ (2002). Plant water relations at elevated CO2: implications for water-limited environments. Plant Cell Environ. 25, 319331.
  • Yalpani N, Enyedi AJ, Leon J, Raskin I (1994). Ultraviolet-light and ozone stimulate accumulation of salicylic-acid, pathogenesis-related proteins and virus-resistance in tobacco. Planta 193, 372376.
  • Zandra C, Borgogni A, Marucchini C (2006). Quantification of jasmonic acid by SPME in tomato plants stressed by ozone. J. Agric. Food Chem. 54, 93179321.
  • Zangerl AR, Berenbaum MR (1987). Furanocoumarins in wild parsnip – effects of photosynthetically active radiation, ultraviolet-light, and nutrients. Ecology 68, 516520.
  • Zavala JA, Ravetta DA (2002). The effect of solar UV-B radiation on terpenes and biomass production in Grindelia chiloensis (Asteraceae), a woody perennial of Patagonia, Argentina. Plant Ecol. 161, 185191.
  • Zavala JA, Scopel AL, Ballare CL (2001). Effects of ambient UV-B radiation on soybean crops: impact on leaf herbivory by Anticarsia gemmatalis. Plant Ecol. 156, 121130.
  • Zhang J, Lechowicz MJ (1995). Responses to CO2 enrichment by two genotypes of Arabidopsis thaliana differing in their sensitivity to nutrient availability. Ann. Bot. 75, 491499.
  • Zvereva EL, Kozlov MV (2006). Consequences of simultaneous elevation of carbon dioxide and temperature for plant-herbivore interactions: a meta-analysis. Glob. Change Biol. 12, 2741.