SEARCH

SEARCH BY CITATION

References

  • Angelini LG, Lazzeri A, Levita G, Fontanelli D, Bozzi C (2000). Ramie (Boehmeria nivea (L.) Gaud.) and Spanish Broom (Spartium junceum L.) fibres for composite materials: agronomical aspects, morphology and mechanical properties. Ind. Crop Prod. 11, 145161.
  • Anterola AM, Lewis NG (2002). Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 61, 221294.
  • Basra AS, Malik CP (1984). Development of the cotton fiber. Int. Rev. Cytol. 89, 65113.
  • Beverudge T, Loubert E, Harrison JE (2000). Simple measurement of phenolic esters in plant cell walls. Food Res. Int. 33, 775783.
  • Bhuiyan NH, Selvaraj G, Wei1 Y, King J (2008). Gene expression profiling and silencing reveal that monolignol biosynthesis plays a critical role in penetration defence in wheat against powdery mildew invasion. J. Exp. Bot. 59, 26872695.
  • Bily AC, Burt AJ, Ramputh A-I, Livesey J, Regnault-Roger C, Philogène BR et al. (2004). HPLC-PAD-APCI/MS Assay of phenylpropanoids in cereals. Photochem. Anal. 15, 915.
  • Boerjan W, Ralph J, Baucher M (2003). Lignin biosynthesis. Annu. Rev. Plant Biol. 54, 519546.
  • Bomati EK, Noel JP (2005). Structural and kinetic basis for substrate selectivity in Populus tremuloides sinapyl alcohol dehydrogenase. Plant Cell 17, 15981611.
  • Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248254.
  • Day A, Ruel K, Neutelings G, Crônier D, David H, Hawkins S et al. (2005). Lignification in the flax stem: evidence for an unusual lignin in bast fibers. Planta 222, 234245.
  • Eudes A, Pollet B, Sibout R, Do C-T, Séguin A, Lapierre C et al. (2006). Evidence for a role of AtCAD 1 in lignification of elongating stems of Arabidopsis thaliana. Planta 225, 2339.
  • Fan L, Linker R, Gepstein S, Tanimoto E, Yamamoto R, Neumann PM (2006). Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics. Plant Physiol. 140, 603612.
  • Fukushima RS, Dehority BA (2000). Feasibility of using lignin isolated from forages by solubilization in acetyl bromide as a standard for lignin analyses. J. Anim. Sci. 78, 31353143.
  • Galletti GC, Piccaglia R, Chiavari G, Concialini V (1989). HPLC/Electrochemical detection of lignin phenolics from wheat straw by direct injection of nitrobenzene hydrolysates. J. Agric. Food Chem. 37, 985987.
  • Goffner D, Joffroy I, Grima-Pettenati J, Halpin C, Knight ME, Schuch W et al. (1992). Purification and characterization of isoforms of cinnamyl alcohol dehydrogenase from Eucalyptus xylem. Planta 188, 4853.
  • Grabber JH, Ralph J, Lapierre C, Barrière Y (2004). Genetic and molecular basis of grass cell-wall degradability. I. Lignin–cell wall matrix interactions. C. R. Biologies 327, 455465.
  • Grima-Pettenati J, Campargue C, Boudet A, Boudet AM (1994). Purification and characterization of cinnamyl alcohol dehydrogenase isoforms from Phaseolus vulgaris. Phytochemistry 37, 941947.
  • Günzler H, Gremlich HU (2002). IR Spectroscopy. WILEY-VCH Verlag GmbH, 69469 Weinheim (Germany).
  • Guo JY, Wang LJ, Chen SP, Hu WL, Chen XY (2007). Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis. Cell Res. 17, 422434.
  • Hatfield R, Fukushima RS (2005). Can lignin be accurately measured? Crop Sci. 45, 832839.
  • Hatfield RD, Grabber J, Ralph J, Brei K (1999). Using the acetyl bromide assay to determine lignin concentrations in herbaceous plants: some cautionary notes. J. Agric. Food Chem. 47, 628632.
  • Hatfield RD, Jung HG, Ralph J, Buxton DR, Weimer PJ (1994). A comparison of the insoluble residues produced by the klason lignin and acid detergent lignin procedures. J. Sci. Food Agric. 65, 5158.
  • Hawkins SW, Boudet AM (1994). Purification and characterization of cinnamyl alcohol dehydrogenase isoforms from the periderm of Eucalyptus gunnii Hook. Plant Physiol. 104, 7584.
  • He XC, Qin YM, Xu Y, Hu CY, Zhu YX (2008). Molecular cloning, expression profiling, and yeast complementation of 19 b-tubulin cDNAs from developing cotton ovules. J. Exp. Bot. 59, 26872695.
  • Hovav R, Udall JA, Hovav E, Rapp R, Flagel L, Wendel JF (2008). A majority of cotton genes are expressed in single-celled fiber. Planta 227, 319329.
  • Iiyama K, Lam TBT, Stone BA (1994). Covalent cross-links in the cell wall. Plant Physiol. 104, 315320.
  • Kim HJ, Triplett BA (2001). Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol. 127, 13611366.
  • Kim SJ, Kim MR, Bedgar DL, Moinuddin SGA, Cardenas CL, Davin LB et al. (2004). Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis. Proc. Natl. Acad. Sci. USA 101, 14551460.
  • Knight ME, Halpin C, Schuch W (1992). Identification and characterisation of cDNA clones encoding cinnamyl dehydrogenase from tobacco. Plant Mol. Biol. 19, 793801.
  • Lanot A, Hodge D, Jackson RG, George GL, Elias L, Lim EK et al. (2006). The glucosyltransferase UGT72E2 is responsible for monolignol 4-O-glucoside production in Arabidopsis thaliana. Plant J. 48, 286295.
  • Lewis NG, Yamamoto E (1990). Lignin: occurrence, biogenesis and biodegradation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 455496.
  • Mouille G, Robin S, Lecomte M, Pagant S, Höfte H (2003). Classification and identification of Arabidopsis cell wall mutants using Fourier-Transform InfraRed (FT-IR) microspectroscopy. Plant J. 35, 393404.
  • Müsel G, Schindler T, Bergfeld R, Ruel K, Jacquet G, Lapierre C et al. (1997). Structure and distribution of lignin in primary and secondary cell walls of maize coleoptiles analyzed by chemical and immunological probes. Planta 201, 146159.
  • Parr AJ, Ng A, Waldron KW (1997). Ester-linked phenolic components of carrot cell walls. J. Agric. Food Chem. 45, 24682471.
  • Pognonec P, Kato H, Sumimoto H, Kretzschmar M, Roeder RG (1991). A quick procedure for purification of functional recombinant proteins overexpressed in E. coli. Nucleic Acids Res. 23, 6650.
  • Potikha TS, Collins CC, Johnson DI, Delmer DP, Levine A (1999). The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiol. 119, 849858.
  • Séné CFB, McCann MC, Wilson RH Grinter R (1994). Fourier-transform Raman and Fourier-transform infrared spectroscopy: an investigation of five higher plant cell walls and their components. Plant Physiol. 106, 16231631.
  • Shi YH, Zhu SW, Mao XZ, Feng JX, Qin YM, Zhang L et al. (2006). Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18, 651664.
  • Sibout R, Eudes A, Mouille G, Pollet B, Lapierre C, Jouanin L et al. (2005). CINNAMYL ALCOHOL DEHYDROGENASE-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell 17, 20592076.
  • Steeves C, Förster H, Pommer U, Savidge R (2001). Coniferyl alcohol metabolism in conifers. I. Glucosidic turnover of cinnamyl aldehydes by UDPG: coniferyl alcohol glucosyltransferase from pine cambium. Phytochemistry 57, 10851093.
  • Timpa JD, Triplett BA (1993). Analysis of cell-wall polymers during cotton fiber development. Planta 189, 101108.
  • Wallace G, Fry S (1994). Phenolic components of the plant cell wall. Int. Rev. Cytol. 151, 229267.
  • Wang L, Zhang Y, Gao P, Shi D, Liu H, Gao H (2005). Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis. Biotechnol. Bioeng. 93, 444456.
  • Wryambik D, Grisebach H (1975). Purification and properties of isoenzymes of cinnamyl-alcohol dehydrogenase from soybean-cell suspension cultures. Eur. J. Biochem. 59, 915.
  • Youn B, Camacho R, Moinuddin SGA, Lee C, Davin LB, Lewis NG et al. (2006). Crystal structures and catalytic mechanism of the Arabidopsis cinnamyl alcohol dehydrogenases AtCAD5 and AtCAD4. Org. Biomol. Chem. 4, 16871697.