Get access

Integrating ancient patterns and current dynamics of insect–plant interactions: Taxonomic and geographic variation in herbivore specialization

Authors

  • J. Mark Scriber

    1. Department of Entomology, Michigan State University, East Lansing, Michigan
    2. McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
    Search for more papers by this author

J. Mark Scriber, Department of Entomology, Michigan State University, East Lansing, MI 48824, USA. Tel: 517 432 1975; email: scriber@msu.edu

Abstract

Abstract  The search for pattern in the ecology and evolutionary biology of insect–plant associations has fascinated biologists for centuries. High levels of tropical (low-latitude) plant and insect diversity relative to poleward latitudes and the disproportionate abundance of host-specialized insect herbivores have been noted. This review addresses several aspects of local insect specialization, host use abilities (and loss of these abilities with specialization), host-associated evolutionary divergence, and ecological (including “hybrid”) speciation, with special reference to the generation of biodiversity and the geographic and taxonomic identification of “species borders” for swallowtail butterflies (Papilionidae). From ancient phytochemically defined angiosperm affiliations that trace back millions of years to recent and very local specialized populations, the Papilionidae (swallowtail butterflies) have provided a model for enhanced understanding of localized ecological patterns and genetically based evolutionary processes. They have served as a useful group for evaluating the feeding specialization/physiological efficiency hypothesis. They have shown how the abiotic (thermal) environment interacts with host nutrirional suitability to generate “voltinism/suitability” gradients in specialization or preference latitudinally, and geographical mosaics locally. Several studies reviewed here suggest strongly that the oscillation hypothesis for speciation does have considerable merit, but at the same time, some species-level host specializations may lead to evolutionary dead-ends, especially with rapid environmental/habitat changes involving their host plants. Latitudinal gradients in species richness and degree of herbivore feeding specialization have been impacted by recent developments in ecological genetics and evolutionary ecology. Localized insect–plant associations that span the biospectrum from polyphenisms, polymorphisms, biotypes, demes, host races, to cryptic species, remain academically contentious, with simple definitions still debated. However, molecular analyses combined with ecological, ethological and physiological studies, have already begun to unveil some answers for many important ecological/evolutionary questions.

Ancillary