The spin-orbit angle of the transiting hot Jupiter CoRoT-1b


  • Based on observations obtained at the W. M. Keck Observatory and the European Southern Observatory.



We measure the angle between the planetary orbit and the stellar rotation axis in the transiting planetary system CoRoT-1, with new HIRES/Keck and FORS/VLT high-accuracy photometry. The data indicate a highly tilted system, with a projected spin-orbit angle λ= 77°± 11°. Systematic uncertainties in the radial velocity data could cause the actual errors to be larger by an unknown amount, and this result needs to be confirmed with further high-accuracy spectroscopic transit measurements. Spin-orbit alignment has now been measured in a dozen extra-solar planetary systems, and several show strong misalignment. The first three misaligned planets were all much more massive than Jupiter and followed eccentric orbits. CoRoT-1, however, is a jovian-mass close-in planet on a circular orbit. If its strong misalignment is confirmed, it would break this pattern. The high occurrence of misaligned systems for several types of planets and orbits favours planet–planet scattering as a mechanism to bring gas giants on very close orbits.