X-ray and optical observations of the closest isolated radio pulsar

Authors

  • A. Tiengo,

    Corresponding author
    1. INAF - Istituto di Astrofisica Spaziale e Fisica Cosmica - Milano, via E. Bassini 15, I-20133 Milano, Italy
      E-mail: tiengo@iasf-milano.inaf.it
    Search for more papers by this author
  • R. P. Mignani,

    1. University College London, Mullard Space Science Laboratory, Holmbury St Mary, Dorking, Surrey RH5 6NT
    Search for more papers by this author
  • A. De Luca,

    1. INAF - Istituto di Astrofisica Spaziale e Fisica Cosmica - Milano, via E. Bassini 15, I-20133 Milano, Italy
    2. IUSS - Istituto Universitario di Studi Superiori, viale Lungo Ticino Sforza 56, I-27100 Pavia, Italy
    Search for more papers by this author
  • P. Esposito,

    1. INAF - Osservatorio Astronomico di Cagliari, località Poggio dei Pini, strada 54, I-09012 Capoterra, Italy
    2. INFN - Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, via A. Bassi 6, I-27100 Pavia, Italy
    Search for more papers by this author
  • A. Pellizzoni,

    1. INAF - Osservatorio Astronomico di Cagliari, località Poggio dei Pini, strada 54, I-09012 Capoterra, Italy
    Search for more papers by this author
  • S. Mereghetti

    1. INAF - Istituto di Astrofisica Spaziale e Fisica Cosmica - Milano, via E. Bassini 15, I-20133 Milano, Italy
    Search for more papers by this author

  • Based on observations obtained with XMM–Newton, a European Space Agency (ESA) science mission with instruments and contributions directly funded by ESA Member States and NASA, and with ESO/VLT Antu (UT1).

E-mail: tiengo@iasf-milano.inaf.it

ABSTRACT

With a parallactic distance of 170 pc, PSR J2144–3933 is the closest isolated radio pulsar currently known. It is also the slowest (P= 8.51 s) and least energetic (inline image erg s−1) radio pulsar; its radio emission is difficult to account for with standard pulsar models, since the position of PSR J2144−3933 in the period–period derivative diagram is far beyond the typical radio ‘death lines’. Here we present the first deep X-ray and optical observations of PSR J2144−3933, performed in 2009 with XMM–Newton and European Southern Observatory (ESO)/Very Large Telescope (VLT), from which we derive, assuming a blackbody emission spectrum, a surface temperature upper limit of 2.3 × 105 K for a 13 km radius neutron star, 4.4 × 105 K for a 500 m radius hotspot and 1.9 × 106 K for a 10 m radius polar cap. In addition, our non-detection of PSR J2144−3933 constrains its non-thermal luminosity to be <30 and <2 per cent of the pulsar rotational energy loss in the 0.5–2 keV X-ray band and in the B optical band, respectively.

Ancillary