• galaxies: active;
  • galaxies: individual: PG 1700+518;
  • galaxies: jets;
  • radio continuum: galaxies


The blueshifted broad absorption lines (BAL) or troughs are observed in active galactic nuclei (AGNs) when our line of sight is intercepted by a high-speed outflow (wind), likely originating in the accretion disc. The outflow or wind can shed light on the internal structure obscured by the AGN torus. Recently, it has been shown that this outflow is rotating in the BAL quasar PG 1700+518, further supporting the accretion disc origin of the wind. With the purpose of giving independent constraints on the wind geometry, we performed high-resolution European very long baseline interferometry (VLBI) Network (EVN) observations at 1.6 GHz in 2010. Combining the results with the Very Large Array (VLA) archival data at 8.4 GHz, we present its jet structure on scales of parsec (pc) to kiloparsec (kpc) for the first time. The source shows two distinct jet features in east–west direction with a separation of around 4 kpc. The eastern feature, which has so far been assumed to hide the core, is a kpc-scale hotspot, which is completely resolved out in the EVN image. In the western jet feature, we find a compact jet component, which pinpoints the position of the central black hole in the galaxy. Jet components on both sides of the core are additionally detected in the north-west–south-east direction, and they show a symmetric morphology on scale of <1 kpc. This two-sided jet feature is not common in the known BAL quasars and indicates that the jet axis is far away from the line of sight. Furthermore, it is nearly parallel to the scattering plane revealed earlier by optical polarimetry. By analogy to polar-scattered Seyfert 1 galaxies, we conclude that the jet likely has a viewing angle around 45°. The analogy is further supported by the recent report of significant cold absorption in the soft X-rays, a nearly unique feature to polar-scattered Seyfert galaxies. Finally, our observations have confirmed the earlier finding that the majority of radio emission in this galaxy arises from AGN activity rather than star formation.