Get access

MODELING THE INACTIVATION KINETICS OF ESCHERICHIA COLI O157:H7 DURING THE STORAGE UNDER REFRIGERATION OF APPLE JUICE TREATED BY PULSED ELECTRIC FIELDS

Authors


TEL: 34-976-761581; FAX: 34-976-761590; EMAIL: pagan@unizar.es

Abstract

ABSTRACT

The aim was to describe the inactivation kinetics of Escherichia coli O157:H7 suspended in apple juice after pulsed electric fields (PEF) and a subsequent storage under refrigeration. Escherichia coli O157:H7 showed a great PEF resistance in apple juice, when survivors were evaluated immediately after PEF. However, PEF-treated cells exhibited a great sensitivity to a subsequent holding in apple juice for 3 days. For instance, although a PEF treatment of 80 pulses at 35.0 kV/cm inactivated less than 0.5 log10 cell cycles, the maintenance of the samples up to 3 days at 4C caused an inactivation of 5.0 log10 cycles. An equation based on the Weibullian-like distribution accurately described the kinetics of cell inactivation.

PRACTICAL APPLICATIONS

The storage time influences the pulsed electric fields (PEF) inactivation of Escherichia coli O157:H7 cells suspended in apple juice. The potential of Weibullian-like distributions to describe survival curves with deviations in their linearity has allowed us to obtain an equation that accurately describes the complete PEF survival profile of E. coli in apple juice, when survivors were evaluated immediately after PEF and also after a subsequent storage under refrigeration. These results underline the possibility of applying PEF to pasteurize acidic foods by taking into account the postprocessing effect of the acidity of the product.

Ancillary